S-ARITHMETICITY OF DISCRETE SUBGROUPS CONTAINING LATTICES IN HOROSPHERICAL SUBGROUPS

HEE OH

0. Introduction. Let \mathbb{Q}_p be the field of *p*-adic numbers, and let $\mathbb{Q}_{\infty} = \mathbb{R}$. Let \mathbf{G}_p be a connected semisimple \mathbb{Q}_p -algebraic group. The unipotent radical of a proper parabolic \mathbb{Q}_p -subgroup of \mathbf{G}_p is called a *horospherical* subgroup. Two horospherical subgroups are called *opposite* if they are the unipotent radicals of two opposite parabolic subgroups. In [5] and [6], we studied discrete subgroups generated by lattices in two opposite horospherical subgroups in a simple real algebraic group with real rank at least 2. This work was inspired by the following conjecture posed by G. Margulis.

CONJECTURE 0.1. Let **G** be a connected semisimple \mathbb{R} -algebraic group such that \mathbb{R} -rank (**G**) ≥ 2 , and let **U**₁, **U**₂ be a pair of opposite horospherical \mathbb{R} -subgroups of **G**. For each i = 1, 2, let F_i be a lattice in $\mathbf{U}_i(\mathbb{R})$ such that $H \cap F_i$ is finite for any proper normal \mathbb{R} -subgroup H of G. If the subgroup generated by F_1 and F_2 is discrete, then it is an arithmetic lattice in $\mathbf{G}(\mathbb{R})$.

We settled the conjecture in many cases, including the case when G is an absolutely simple real split group with $G(\mathbb{R})$ not locally isomorphic to $SL_3(\mathbb{R})$ (see [5]).

In this paper, we study a problem analogous to the conjecture in a product of real and *p*-adic algebraic groups. The following is a special case of the main theorem, Theorem 4.3.

THEOREM 0.2. Let *S* be a finite set of valuations of \mathbb{Q} including the archimedean valuation ∞ . For each $p \in S$, let \mathbf{G}_p be a connected semisimple algebraic \mathbb{Q}_p -group without any \mathbb{Q}_p -anisotropic factors, and let \mathbf{U}_{1p} , \mathbf{U}_{2p} be a pair of opposite horospherical subgroups of \mathbf{G}_p . Set $G = \prod_{p \in S} \mathbf{G}_p(\mathbb{Q}_p)$, $U_1 = \prod_{p \in S} \mathbf{U}_{1p}(\mathbb{Q}_p)$, and $U_2 = \prod_{p \in S} \mathbf{U}_{2p}(\mathbb{Q}_p)$.

Assume that \mathbf{G}_{∞} is absolutely simple \mathbb{R} -split with rank at least 2 and that if $\mathbf{G}_{\infty}(\mathbb{R})$ is locally isomorphic to $\mathrm{SL}_3(\mathbb{R})$, then $\mathbf{U}_{1\infty}$ is not the unipotent radical of a Borel subgroup of \mathbf{G}_{∞} . Let F_1 and F_2 be lattices in U_1 and U_2 , respectively. If the subgroup generated by F_1 and F_2 is discrete, then it is a nonuniform S-arithmetic lattice in G.

If p is a nonarchimedean valuation of \mathbb{Q} , then no horospherical subgroup of $\mathbf{G}_p(\mathbb{Q}_p)$ admits a lattice. Moreover, there is no infinite unipotent discrete subgroup in a p-adic Lie group. Therefore it is necessary to assume in Theorem 0.2 that S contains the archimedean valuation ∞ .

Received 12 January 1999.

1991 Mathematics Subject Classification. Primary 22E40; Secondary 22E46, 22E50.

Author's work partially supported by National Science Foundation grant number DMS-9801136.

209