MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A, VOI. XXVII, Mathematics No. 1, 1952.

On the Varieties of the Classical Groups in the Field of Arbitrary Characteristic

by

Jun-ichi IGUSA

(Received October 30, 1951)

Let K be a universal domain over the prime field ρ of characteristic p, then the matrix of degree $n(n \ge 1)$ with coefficients in K

$$\sigma = (x_i^{(j)})(1 \le i, j \le n)$$

can be considered as a point of an n^2 -space in our algebraic geometry. Since the equation

det
$$(\sigma) = 0$$

in the n^2 coefficients of σ is absolutely irreducible, it defines over ρ a variety of n^2-1 dimension in the n^2 -space. If we take out this variety as a frontier from the space, the abstract variety so obtained forms the general linear group $GL(n, \mathbf{K})$ by matrix multiplication. Moreover since the group operation

 $(\sigma, \tau) \rightarrow \sigma \cdot \tau^{-1}$

in $GL(n, \mathbf{K})$ is a function, which is everywhere defined on the product variety $GL(n, \mathbf{K}) \times GL(n, \mathbf{K})$, the group $GL(n, \mathbf{K})$ is the so-called *group variety* in the recent terminology.¹⁾

We shall now define the special linear group $SL(n, \mathbf{K})$ and the special orthogonal group $SO(n, \mathbf{K})$ in \mathbf{K} by the equations

$$\det (\sigma) = 1$$

$${}^{t}\sigma \cdot \sigma = {}^{t}\sigma \cdot I_{n} \cdot \sigma = I_{n}, \quad \det (\sigma) = 1$$

respectively, where I_n means the unit matrix of degree n. More-

and

We shall use freely the results and terminology of Weil's book: Foundations of algebraic geometry, Am. Math. Soc. Colloq., Vol. 29 (1946).

¹⁾ See A. Weil, Variétés Abéliennes et courbes algébriques, Act. Sc. et Ind., n^0 1964 (1948), § II.