MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES Å, Vol. XXVII, Mathematics No. 2, 1952.

On the Existence of Systems of Periodic Solutions for Several Nonlinear Circuits.

By

Sigeru Mizohata

(Received March 24, 1952)

The authour has obtained with M. Yamaguti a theorem on the existence of periodic solutions for nonlinear differential equations by a simple method.¹⁰ Now we consider the natural extension of this method to nonlinear systems. Recently D. Graffi²⁰ has proved the existence of periodic systems for a type of nonlinear circuits. Here we will show a general principle which guarantees the existence of periodic systems for this type of nonlinear system, i. e.

$$\sum_{j=1}^{n} L_{ij} \dot{x}_{j} + f_{i}(x_{i}) \dot{x}_{i} + \varphi_{i}(x_{i}) = p_{i}(t) \quad (i = 1, 2, ..., n),$$
(1)

where $L_{ij} = \text{const.}$, $L_{ij} = L_{ji}$, $\sum_{i,j} L_{ij}\xi_i\xi_j > 0$, when $|\xi_1| + ... |\xi_n| \neq 0$, $p_i(t) \equiv p_i(t+\omega)$, $\int_0^{\omega} p_i(t)dt = 0$, (i=1, 2, ..., n), and the functions $f_i(x_i)$, $\varphi_i(x_i)$ are continuous and moreover the latter fulfil the condition of Lipshitz,³⁾ and $p_i(t)$ are continuous.

And, as examples, we will show Graffi's example (example I) and another of van der Pol's type (example II).

The principle is as follows:

THEOREM. The system (1) possesses at least one system of periodic solution $(x_1(t),...,x_n(t)), (x_i(t+\omega) \equiv x_i(t)), \text{ if the following conditions are fulfilled,}$

i)
$$\operatorname{sgn} x_i \cdot \varphi_i(x_i) > 0$$
 for $|x_i| > q$, $\varphi_i(x_i) = \int_0^{x_i} \varphi_i(x_i) dx_i \to +\infty$,

 $(|x_i| \rightarrow \infty), (i=1, 2, ..., n).$

ii) there exist two constants r_0 and ε such that

$$A(x; t)^{4} = \sum_{i,j} \tilde{L}_{ij} \varphi_i(x_i) \left[F_j(x_j) - P_j(t) \right] \ge \varepsilon(>0)$$

for $\sqrt{x_1^2 + \ldots + x_n^2} \ge r_0$, where $F_i(x_i) = \int_0^{x_i} f_i(x_i) dx_i$, $P_i(t) = \int_0^t p_i(t) dt$