MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES, A Vol. XXVII, Mathematics No. 3, 1953.

On the integral closure of an integral domain

By

Yoshiro Mori

(Received August 8, 1952)

Introduction. By an integral domain we mean a commutative ring \Re which satisfies the following condition: \Re satisfies the ascending chain condition and possesses no zero-divisor ± 0 . A local ring is a commutative ring \Re with an unit element in which:

(1) The set \mathfrak{p}_0 of all non-units is an ideal in \mathfrak{R} ;

(2) Every ideal in \Re has a finite basis.

A local ring \Re is called a local domain if the ring \Re possesses no zero-divisor.

Let \Re be an integral domain and K be the field of quotients of \Re . It is conjectured by Krull [2, p. 108] that the integral closure $\overline{\Re}$ of \Re in K is an "Endliche diskrete Hauptordnung". If $\Re: \overline{\Re} \neq (0), \overline{\Re}$ is a Noetherian ring and also Krull's conjecture is valid [2, p. 105]. Therefore it only remains that his conjecture should be proved in the case where $\Re: \overline{\Re} = (0)$. When \Re is a 1-dimensional local domain, it was already proved by Krull [1]. Hence it is clear that Krull's conjecture is valid provided that an integral domain \Re is "einartig" [2, p. 109]. The purpose of this paper is to prove that Krull's conjecture is valid in the case where $\Re: \overline{\Re} = (0)$ and \Re is not "einartig".

In the first part of this paper we shall prove that Krull's conjecture is valid if the completion \Re^* of a local domain \Re possesses no nilpotent element. The second part is devoted to the proof of Krull's conjecture in the case in which \Re^* has nilpotent elements, and we shall prove that Krull's conjecture is generally valid in an integral domain. In the third part we discuss the sufficient condition that $\Re: \overline{\Re} \neq (0)$ holds for a local domain.

In this paper we denote the completion of a local ring \Re by \Re^* and the integral closure of an integral domain \mathfrak{S} in the field of quotients of \mathfrak{S} by $\overline{\mathfrak{S}}$.

Numbers in brackets refer to the Bibliography at the end of the paper.