MEMOIRRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES, A Vol. XXVIII, Mathematics No. 1, 1953.

Maximum Principle for Analytic Functions on Open Riemann Surfaces.

Bу

Yukio Kusunoki

(Received 20 April, 1953)

1. Let \mathfrak{F} be a non-compact region on an open Riemann surface F, such that its relative boundary Γ_0 consists of a finite number of closed analytic curves on F. Now let w(P) be a single-valued analytic function on \mathfrak{F} , satisfying a condition

(1)
$$\overline{\lim_{\Gamma_0}} |w(P)| \leq 1.$$

We consider an arbitrary compact ring domain $G \subset \mathfrak{F}$, whose boundary consists of Γ_0 and Γ , where Γ is composed of a finite number of closed analytic curves and separates Γ_0 from the ideal boundary \mathfrak{F} of \mathfrak{F} . If we put

$$\operatorname{Max}_{P\in \Gamma} | w(P) | \equiv M(I'),$$

then we have

(2) $\log |w(P)| \leq \omega(P, I', G) \log M(\Gamma)$, for $P \in G$, where $\omega_G(P) \equiv \omega(P, I', G)$ denotes the harmonic measure of *I* with respect to G. Namely, since $\omega(P, I', G) \log M(I') - \log |w(P)|$ is single-valued, harmonic in $P \in G-S$ (where $S = E\{P; w(P) = 0, P \in G + \Gamma_0 + I'\}$) and ≥ 0 for *P* on Γ_0 , *I* and arbitrarily large in the neighborhood of *S*, hence we easily obtain (2) by use of the maximum principle for harmonic function in compact region.

2. We fix an arbitrary point $P_0 \\\in G$ and consider the level curve $\Gamma^G: \\ \\\omega_G(P) = \\\omega_G(P_0)$. Then Γ^G consists of a finite number of closed analytic curves (occasionally with multiple points) on G and separates Γ_0 from Γ . Clearly it contains a curve passing through P_0 . In following we shall denote the ring domain (on \mathfrak{F}) by $R(\Gamma, \Gamma')$ which is surrounded by two disjoint arbitrary boundaries Γ and Γ' . Let $R(\Gamma_0, \Gamma^G) \equiv G^*$, where Γ^G is homologous to Γ_0 , then

$$\omega_G^* \equiv \omega(P, I', G) / \omega_G(P_0)$$

is clearly the harmonic measure Γ^{G} with respect to G^{*} and its