MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES, A Vol. XXVIII, Mathematics No. 1, 1953.

On the Stiefel Characteristic Classes of a Riemannian Manifold

By

Seizi TAKIZAWA

(Received April 15, 1953)

Introduction. One of the chief problems in differential geometry in the large is the inquiry on relations between the *Stiefel characteristic classes* of a compact orientable manifold and a Riemannian metric defined on it. The determination of the formulas which express the characteristic classes in terms of differential forms has been discussed in the paper of Allendoerfer [1],* as an argument analogous to the proof of the Allendoerfer-Weil formula.

In the present paper we shall deal with this subject from a different point of view which is more geometrical. It will be shown that the consideration of a given frame function can be reduced to the simplest case in virtue of the homotopy theory of fibre bundles, and that the formulas can be found naturally from the well-known result due to Chern [4], making use of the induced metric on a submanifold. Thus, we make clear the intrinsic properties of the differential forms appearing in the formulas.

1. Preliminaries and notations. Let \mathbb{R}^n be a compact connected orientable Riemannian manifold of dimension n and class ≥ 4 , and let \mathfrak{B}^{n-1} denote the tangent sphere bundle over it. Then we can get in a certain way the associated bundle \mathfrak{B}^r ($0 \leq q \leq n-1$) of \mathfrak{B}^{n-1} having the Stiefel manifold $Y^q = V_{n,n-q}$ as fibre. Each element of \mathfrak{B}^q may be an (n-q)-frame in \mathbb{R}^n ,

$$\mathfrak{b}^q = P \mathfrak{e}_{q+1} \mathfrak{e}_{q+2} \cdots \mathfrak{e}_n,$$

where P is a point of \mathbb{R}^n and $e_{q+1}, e_{q+2}, \dots, e_n$ are mutually orthogonal unit vectors of \mathbb{R}^n with origin P. If we define a map $p: \mathfrak{V}^q \to \mathfrak{V}^{q+1}$ by

$$p\mathfrak{b}^q = P\mathfrak{e}_{q+2}\cdots\mathfrak{e}_n,$$

.

^{*)} Numbers in square brackets refer to the bibliography.