MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXVIII, Mathematics No. 2, 1953.

On the non-linear differential equation

By

Taro Yoshizawa

(Received June 22, 1953)

1. About special forms of non-linear differential equations of the second order, the boundedness of solutions and the existence of a periodic solution have been discussed by various authors; Cartwright, Littlewood, Reuter and others.

Now generalizing the problems, we consider a system of differential equations,

(1)
$$\begin{cases} \frac{dx}{dt} = f(t, x, y) \\ \frac{dy}{dt} = g(t, x, y) \end{cases}$$

where f(t, x, y) and g(t, x, y) are *continuous* in the domain

The non-linear differential equation of the second order is a special case of (1).

At first, we shall prove two lemmas in order to discuss the boundedness theorem for the solutions of (1).

Lemma 1. Let A_1 and B_1 be two positive constants (A_1 and B_1 may be arbitrarily great) and \mathfrak{A} be the domain

$$|x| < A_1, |y| < B_1.$$

Suppose that there exists a continuous function $\Phi(x, y)$ satisfying the following conditions in the domain

where \mathfrak{A}° is the complement of \mathfrak{A} in $[-\infty < x < +\infty, -\infty < y < +\infty]$; namely the conditions are that

- $1^{\circ} \quad \Psi(x, y) > 0,$
- 2° $\Psi(x, y)$ tends to zero uniformly for y and x respectively when |x| or |y| becomes infinity,