MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXVIII, Mathematics No.2, 1953.

On the differential equation of Carathéodory's type

By

Kyuzo Hayashi

(Received May 23, 1953)

In this paper we shall study the differential equation of Carathéodory's type:

$$\frac{dy}{dx} = f(x, y)$$

where f(x, y) is defined in the strip

S: $a \leq x \leq b$, $-\infty < y < +\infty$,

measurable with respect to x, continuous with respect to y and dominated in S by a summable function k(x) of x alone. It is known¹ that the above equation has solutions in the interval

$$I: a \leq x \leq b,$$

in the following sense: there exist in *I* absolutely continuous functions $\varphi(x)$ such that $\varphi(x) = \varphi(a) + \int_a^x f(t,\varphi(t)) dt$ in *I*, and then $\varphi'(x) = f(x, \varphi(x))$ in a measurable subset of *I*, having the same measure as *I* and depending upon the particular solution $\varphi(x)$.

Recently Prof. G. Scorza Dragoni²⁾ has proved that we can determine a measurable subset E of I such that E is of the same measure as I and every absolutely continuous solution satisfies the differential equation on the set E.

The purpose of this paper is to give a simple proof of this theorem.

§1. Let g(x) be a measurable function of x in I such that $|g(x)| \leq h(x)$, h(x) being summable in I. Moreover, suppose that g(x) is continuous on each of sets e_1, e_2, \ldots, c closed and satisfying $\lim_{n \to \infty} m(e_n) = b - a$. Let e'_n denote the set of the points of e_n of density 1 for e_n and e the union of all $e'_n(n=1, 2, \ldots)$. Then e is a mea-