MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXVIII, Mathematics No. 2, 1953.

Notes on Chow points of algebraic varieties.

By

Yoshikazu NAKAI

(Reeived September 5, 1953)

Let V be an algebraic variety embedded in a projective space. Then as is well known we can represent V by a point in a suitable projective space by the method of associated forms¹⁾. Henceforth we shall call it briefly the Chow point of V and denote it by c(V). In this short note we shall prove two theorems, one concerning the Chow point of a variety, and the other concerning the Chow point of the divisors on a variety.

THEOROM 1. Let V be a variety embedded in a projective space and κ the prime field of characteristic p. Let M_{λ} ($\lambda = 1, 2, \cdots$) be a sequence of independent generic points of V over some field of definition k for V, then for sufficiently large " we have $c(V) \subset \kappa(M_1, \cdots, M_n)$.

PROOF. As is well known a projective model has the smallest field of definition $k_0 = \kappa(c(V))$.²⁾ Let \mathfrak{P} be the defining ideal of V in k[X]. Then we can select special basis $(P_1(X), \dots, P_s(X))$ for \mathfrak{P} having the following properties.

(1) k_0 is get by the adjunction of the coefficients of $P_j(X)$ to κ .

(2) Let $\mathfrak{M}_{\lambda}(X)$ be monomials in X with suitable ordering and J_i be the set of indices such that $P_i(X)$ is exactly the linear forms in $\mathfrak{M}_{\lambda_i}(X)$ with $\lambda_i \in J_i$. Then for any proper subset J_i' of J_i , the linear forms $\sum u_{\beta} \mathfrak{M}_{\beta}(X)$ with $\beta \in J_i'$ and $u_{\beta} \in k_0$ can not be contained in \mathfrak{P} . Such basis can be get by the procedure given in W-I,³⁰ lemma 2. Let

¹⁾ Cf. B. L. van der Waerden, "Einführung in die algebraische Geometrie". Julius Springer in Berlin, 1939.

²⁾ Cf. S. Nakano, "Note on gruop varietirs", Mem. Coll. Sci., Univ. of Kyoto, vol. XXVII, 1942.

³⁾ This means the lemma 2 of Chap. I of "Foundations of algebraic geometry" written by A. Weil,