MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SESIRS A Vol. XXVIII, Mathematics No. 2, 1953.

Note on integral closures of Noetherian domains

By

Masayoshi NAGATA

(Received November 3, 1953)

Previously Prof. Akizuki¹⁾ proved that if \mathfrak{o} is a Noetherian local integrity domain²⁾ of dimension 1 and if $\hat{\mathfrak{o}}$ is its integral closure³⁾, then any ring \mathfrak{s} such that $\mathfrak{o}\subseteq\mathfrak{s}\subseteq\hat{\mathfrak{o}}$ is Notherian⁴⁾.

As for the case of higher dimension, there arise the following problems :

Let v be a Noetherian local integrity domain of dimension nand let \hat{v} be its integral closure. Then

Problem I. Does it holds in general that any ring \mathfrak{s} such that $\mathfrak{o} \subseteq \mathfrak{g} \subseteq \hat{\mathfrak{o}}$ is Noetherian?

Problem II. Does it holds in general that \hat{v} is Noetherian?

In the present note, we show a counter example against the problem I when n=2 in § 2 and then a counter example against the problem II when n=3 in § 3^{5_0} .

\S 1. A preliminary.

Let f_0 be a perfect field of characteristic $p \ (\neq 0)$ and let $u_1 \cdots$, u_n, \cdots (infinitely many) be algebraically independent elements over f_0 . Set $f = f_0(u_1, \cdots, u_n, \cdots)$. Further let x_1, \cdots, x_n be indeterminates and denote by o_n and r_n the rings $f^p \{x_1, \cdots, x_n\} [f]$ and $f \{x_1, \cdots, x_n\}^{(n)}$ respectively.

5) It was communicated to the writer that this problem II was proved affirmatively by Mr. Mori, when n=2.

6) $t\{x_1, \dots, x_n\}$ denotes the ring of formal power series in x_1, \dots, x_n with coefficients in t.

¹⁾ Y. Akizuki, Einige Bemerkunge über primäre Integritätsbereiche mit Teilerkettensatz, Proc. Phys.-Math. Soc. Japan, 3rd Ser., 17 (1935), pp. 327-336.

²⁾ We say in the present note that a ring o is a local ring if it has only one maximal ideal m and if the intersection of all powers of m is zero, where we consider the m-adic topology for o.

³⁾ This means the integral closure in its quotient field.

⁴⁾ This result shows also the similar result for "einartig" Noetherian integrity domains.