ERRATA, VOLUME XXVII

Yoshiro Mori, "On the integral closure of an integral domain", pp. 249-256.

It was wrong that $\vec{v}^* \subseteq \vec{v}^*$. But since $v^* \subseteq \vec{v}^* \subseteq \vec{v}^*$, by the following Lemma 7, if we take \vec{v}^* instead of \vec{N}^* in the proof of Theorem 1, we can correct the proof of Theorem 1 as follows:

Lemma 7. Let the ring \Re be mapped onto \Re by the ring homomorphism of \mathfrak{R}^* onto $\mathfrak{R}^*/l^* = \mathfrak{0}^*$ and \tilde{K} be the quotient field of \Re , then $K \cap \bar{\mathfrak{d}}^* = \Re$ where \Re is the integral closure of the local domain $\tilde{\mathfrak{R}}$ in \tilde{K} .

Since any element of \tilde{K} is expressed as \tilde{a}/\tilde{b} where \tilde{a} and $\tilde{b}(\neq 0) \in \tilde{\mathfrak{R}}$, if $\tilde{a}/\tilde{b} \in \tilde{\mathfrak{v}}^*$, then $(\tilde{a}/\tilde{b})^m + \tilde{c}_1^* (\tilde{a}/\tilde{b})^{m-1} + \cdots + \tilde{c}_i^* (\tilde{a}/\tilde{b})^{m-i} + \cdots$ $+\tilde{c}_m^* = 0$ where $\tilde{c}_i^* \in \mathfrak{v}^*$. Hence $\tilde{a}^m + \tilde{c}_i^* \tilde{a}^{m-1} \tilde{b} + \cdots + \tilde{c}_i^* \tilde{a}^{m-i} \tilde{b}^i + \cdots$ $+\tilde{c}_{m}^{*}\tilde{b}^{m}=0$. Let c_{i}^{*} , a, b respectively representatives in \mathbb{R}^{*} of the residue classes \tilde{c}_i^* , \tilde{a} , b where we choose a, b from \mathfrak{R} , then $a^m + c_1^* a^{m-1} b + \cdots + c_i^* a^{m-i} b^i + \cdots + c_m^* b^m \in \mathcal{U}^*$. Hence $(a^m + c_1^* a^{m-1} b + \cdots)$ + $c_i^* a^{m-i} b^i + \dots + c_m^* b^m$ $e = 0$, provided $l^{*e} = (0)$, and also $a^M + d_i^* a^{M-1} b$ $+\cdots + d_i^* a^{M-i} b^i + \cdots + d_M^* b^M = 0$ where $d_i^* \in \mathbb{R}^*$. This shows that a^M is in $(a^{M-1}b, \dots, a^{M-i}b', \dots, b^M)\mathfrak{R}^*$ and therefore in $(a^{M-1}b, a^{M-2}b^2, \dots, b^M)$ $a^{u-i}b^i, \dots, b^u$) $\Re^* \cap \Re = (a^{u-i}b, \dots, a^{u-i}b^i, \dots, b^u)$ \Re . Thus we can write $a^M + d_1 a^{M-1}b + d_2 a^{M-2}b^2 + \cdots + d_i a^{M-i}b^i + \cdots + d_M b^M = 0$ where $d_i \in \mathbb{R}$ and also $\tilde{a}^M + \tilde{d}_1 \tilde{a}^{M-1} \tilde{b} \cdots + \tilde{d}_n \tilde{a}^{M-1} \tilde{b}^N + \cdots + \tilde{d}_M \tilde{b}^M = 0$ where \tilde{d}_i are the residue classes of d_i modulo l^* . Hence $\tilde{a}/\tilde{b} \in \tilde{\mathfrak{R}}$ and $\tilde{\mathfrak{R}} \subset \tilde{v}^*$ because every element of \Re is a non-zero-divisor in \Re^* . This completes the proof of our Lemma 7.

Proof of Theorem 7.

If α is an element of \Re , α is a non-zero-divisor in \Re^* . Let α denote the residue class of $\alpha \in \mathbb{R}^*$ modulo ℓ^* . Then $\tilde{\alpha} \tilde{\nu}^*$ can be expressed as a finite intersection of symbolic powers of minimal prime ideals by Proposition 3. If $\tilde{\alpha} \tilde{\sigma}^* = \cap Q_{ij}^*$ is an irredundant intersection of symbolic powers of minimal prime ideals, we put $\overline{Q}_{i,j}^* \cap \widetilde{\mathfrak{R}} = \overline{\widetilde{q}}_{i,j}$. Then $\tilde{\alpha} \overline{\tilde{\mathfrak{R}}} = \overline{\alpha} \overline{\tilde{\mathfrak{q}}}_{i,j}$ by Lemma 7. As we may assume that $\tilde{\alpha} \tilde{\mathfrak{R}} = \overline{\alpha} \overline{\tilde{\mathfrak{q}}}_{\lambda}$ is an irredundant intersection of primary ideals $\tilde{\bar{q}}_1$, $\tilde{\bar{q}}_2$, \cdots , $\tilde{\bar{q}}_r$, the prime ideals $\tilde{\mathfrak{p}}_i$ belonging to the primary ideals $\overline{\tilde{\mathfrak{q}}}_i$ is a minimal prime ideal in $\tilde{\vec{\mathfrak{R}}}$. For, if we assume that $\tilde{\vec{p}}_i$ is not minimal in $\tilde{\vec{\mathfrak{R}}}$, similarly to the proof of Prop 3, $(\overline{\tilde{\mathfrak{p}}}_i)^{-1} \supset \overline{\tilde{\mathfrak{R}}}$, and $(\overline{\tilde{\mathfrak{p}}}_i)^{-1}(\overline{\tilde{\mathfrak{p}}}_i) = \overline{\tilde{\mathfrak{p}}}_i$. Hence, if $\tilde{x} \in (\overline{\tilde{p}_i})^{-1}$ and $\tilde{x} \notin \tilde{\Re}$, then $\tilde{x} \tilde{p}_i \in \overline{\tilde{p}_i}$ and also $\tilde{x}^N \tilde{\tilde{p}_i} \in \tilde{\tilde{p}_i}$ $(N=1, 2, \dots, n, \dots)$.