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In the first two sections we consider the system of ordinary
differential equations

(1) —dyLz f(x’ yh y‘.‘» "',yn> (i’:l, 2, tt n)
dx

where f;(x, ¥, ¥5, -+, ¥.) are defined and continuous in a region
En+l . ngéa, ly.|<+°° (i:l, 2"“:”)-

Let us consider (y;, ¥.---,y.) as a vector ¥, then (f,f, -, f)
defines a vector-function of (x, &), conveniently written f(x, ¥).
Thus (1) assumes the simple form

@) Y _f(s, y).
dx
In § 3, the differential equation of the second order is investi-
gated as a special case of (1).

§ 1. Transformations of (1)

Let f(f) be the greatest value of 1, t and max |f(x, ¥)|, where
Se<a
T e T T T T§ —'I)‘-_“rT“!ﬁ“gi; .
Wi=Vvy +y’+-+y° and |fl= VPS4 +12, then f(f) is a
positive continuous function of ¢, not less than unity, in 0<t< + co.
Now for a given positive constant o, consider the function 4(7)
defined by the relation

1 =j"“ di
a(nte o sy’
then 4(7) is a continuous function of 7 in 0 <7<+ o0, 4(#)>>1 in
0<7<+ o and lim4i(#)=+o. And evidently /() has the con-

»>+ 0

tinuous derivative



