On transformations of differential equations

By
Kyûzò Hayashi

(Received December 18, 1953)

In the first two sections we consider the system of ordinary differential equations

$$
\begin{equation*}
\frac{d y_{i}}{d x}=f_{i}\left(x, y_{1}, y_{i}, \cdots, y_{n}\right) \quad(i=1,2, \cdots, n) \tag{1}
\end{equation*}
$$

where $f_{i}\left(x, y_{1}, y_{2}, \cdots, y_{n}\right)$ are defined and continuous in a region

$$
E_{n+1}: 0 \leqq x \leqq a, \quad\left|y_{i}\right|<+\infty \quad(i=1,2, \cdots, n)
$$

Let us consider $\left(y_{1}, y_{0}, \cdots, y_{n}\right)$ as a vector \boldsymbol{y}, then $\left(f_{1}, f_{2}, \cdots, f_{n}\right)$ defines a vector-function of (x, y), conveniently written $\boldsymbol{f}(x, \boldsymbol{y})$. Thus (1) assumes the simple form

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y) \tag{2}
\end{equation*}
$$

In $\S 3$, the differential equation of the second order is investigated as a special case of (1).

§ 1. Transformations of (1)

Let $f(t)$ be the greatest value of $1, t$ and $\max _{1 \leq \leq \leq n}|f(x, y)|$, where $|\boldsymbol{\eta}|=\sqrt{y_{1}{ }^{2}+y_{2}^{2}+\cdots+y_{n}{ }^{2}}$ and $|\boldsymbol{f}|=\sqrt{ } \overline{f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}{ }^{2}}$, then $f(t)$ is a positive continuous function of t, not less than unity, in $0 \leqq t<+\infty$. Now for a given positive constant σ, consider the function $\lambda(r)$ defined by the relation

$$
\frac{1}{\{\lambda(r)\}^{0}}=\int_{r}^{r+1} \frac{d t}{\{f(t)\}^{2}}
$$

then $\lambda(r)$ is a continuous function of r in $0 \leqq r<+\infty, \lambda(r) \geq 1$ in $0 \leqq r<+\infty$ and $\lim _{r \rightarrow+\infty} \lambda(r)=+\infty$. And evidently $\lambda(r)$ has the continuous derivative

