MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXVIII, Mathematics No. 3, 1954.

On transformations of differential equations

By

Kyûzô Hayashi

(Received December 18, 1953)

In the first two sections we consider the system of ordinary differential equations

(1)
$$\frac{dy_i}{dx} = f_i(x, y_1, y_2, \dots, y_n) \quad (i=1, 2, \dots, n)$$

where $f_i(x, y_1, y_2, \dots, y_n)$ are defined and continuous in a region

 $E_{n+1}: 0 \leq x \leq a, |y_i| < +\infty \quad (i=1, 2, \dots, n).$

Let us consider (y_1, y_2, \dots, y_n) as a vector y, then (f_1, f_2, \dots, f_n) defines a vector-function of (x, y), conveniently written f(x, y). Thus (1) assumes the simple form

(2)
$$\frac{dy}{dx} = f(x, y).$$

In § 3, the differential equation of the second order is investigated as a special case of (1).

$\S 1$. Transformations of (1)

Let f(t) be the greatest value of 1, t and $\max_{\substack{t \leq t \leq \sigma \\ |y| \leq t}} |f(x, y)|$, where $|y| = \sqrt{y_1^2 + y_2^2 + \dots + y_n^2}$ and $|f| = \sqrt{f_1^2 + f_2^2 + \dots + f_n^2}$, then f(t) is a positive continuous function of t, not less than unity, in $0 \leq t < +\infty$. Now for a given positive constant σ , consider the function $\lambda(r)$ defined by the relation

$$\frac{1}{\{\lambda(r)\}^{\sigma}} = \int_{r}^{r+1} \frac{dt}{\{f(t)\}^{2}}$$

then $\lambda(r)$ is a continuous function of r in $0 \le r < +\infty$, $\lambda(r) \ge 1$ in $0 \le r < +\infty$ and $\lim_{r \to +\infty} \lambda(r) = +\infty$. And evidently $\lambda(r)$ has the continuous derivative