MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXVIII, Mathematics No. 3, 1954.

Note on intersection multiplicity of proper components of algebraic or algebroid varieties

By

Masayoshi NAGATA

(Received Dec. 1, 1953)

Let v be the ring of polynomials or the ring of formal power series in indeterminates x_1, \dots, x_n over a field k. Let v and q be prime ideals in v and let u be a minimal prime divisor of (v, q)v. It is easy to see that rank $u \leq \operatorname{rank} v + \operatorname{rank} q^{(1)}$ When rank u =rank $v + \operatorname{rank} q$, we say that u is a proper component of $v \cup q$. On the other hand, the multiplicity $i(u; v \cup q)$ of a minimal prime divisor u of (v, q)v with respect to $v \cup q$ is defined as follows: Let v' be a copy of v and we construct $v^* = v \times v'$.²⁾ We denote by vthe set $\{x_1 - x_1', \dots, x_n - x_n'\}$, where x_i' is the copy of x_i (in v'). Let q' be the copy of q. Set $u^* = (u, v)v$. It is evident that u^* is a prime ideal of v^* . Set $\hat{v} = v^* u^*$. Then we define

$$i(\mathfrak{n};\mathfrak{p}\cup\mathfrak{q})=e((\mathfrak{d},\mathfrak{p},\mathfrak{q}')\hat{\mathfrak{o}}/(\mathfrak{p},\mathfrak{q}')\hat{\mathfrak{o}})^{3/4}$$

The purpose of the present paper is to show the following

Theorem. Assume that $(\mathfrak{p}, \mathfrak{q}')\mathfrak{o}$ is a prime ideal of \mathfrak{o} and that \mathfrak{n} is a proper component of $\mathfrak{p} \cup \mathfrak{q}$. Then we have

(1) $i(\mathfrak{n}; \mathfrak{p} \cup \mathfrak{q}) \leq e((\mathfrak{p}, \mathfrak{q})\mathfrak{o}_n/\mathfrak{q}\mathfrak{o}_n)$, and the equality holds if and only if $\mathfrak{p}\mathfrak{o}_n$ is generated by elements of number rank \mathfrak{p} ;

(2) $i(\mathfrak{n}; \mathfrak{p} \cup \mathfrak{q}) \leq e((\mathfrak{p}, \mathfrak{q})\mathfrak{o}_{\mathfrak{n}})$, and the equality holds if and only

¹⁾ It is easy to see that if r is a regular local ring and if \mathfrak{p} and \mathfrak{q} are prime ideals of r, then for any minimal prime divisor n of $(\mathfrak{p}, \mathfrak{q})r$ we have rank $\mathfrak{n} \leq \operatorname{rank} \mathfrak{p} + \operatorname{rank} \mathfrak{q}$.

²⁾ When \mathfrak{o} is the ring of polynomials, we mean under this notation $\mathfrak{o} \times_k \mathfrak{o}'$ the tensor product of \mathfrak{o} and \mathfrak{o}' over k (therefore $\mathfrak{o} \times_k \mathfrak{o}' = k[x_1, \dots, x_n, x_1', \dots, x_n'])$; when \mathfrak{o} is the ring of formal power series, we mean under the same notation the Kroneckerian product of \mathfrak{o} and \mathfrak{o}' over k in the sense of C. Chevelley, Intersections of algebraic and algebroid varieties, Trans. Amer. Math. Soc. 57 (1945), pp. 1-85 (in this case, $\mathfrak{o} \times_k \mathfrak{o}' = k$ $\{x_1, \dots, x_n, x_1', \dots, x_n'\}$).

³⁾ Cf. C. Chevalley, 1. c. note 2).