Note on complete local integrity domains

By Masayoshi Nagata

(Received Dec. 1, 1953)

Previously some interesting results concerning prime ideals in rings of formal power series were proved by C. Chevalley [1]. In the present paper, we want to offer a new treatment on the similar assertions. We see on the way a new result that when \mathfrak{o} is a complete (Noetherian) local integrity domain with a basic field k, \mathfrak{o} is separably generated over k if and only if there exists a system of parameters x_1, \dots, x_n of \mathfrak{o} such that \mathfrak{o} is separable over the ring $k \{x_1, \dots, x_n\}$ (formal power series).

Throughout the present paper, a local ring means a Noetherian local ring which contains a field.

§1. Kroneckerian products.

Let v_1 and v_2 be complete local rings with basic fields k_1 and k_2 respectively. If K is a field containing both k_1 and k_2 , we can define the Kroneckerian product of $(k_1$ -algebra) v_1 and $(k_2$ -algebra) v_2 over K, as was defined by C. Chevalley [2]. We denote this Kroneckerian product by $v_1/k_1 \times {}_{K}v_2/k_2^{2}$. (For the detail, see Chevalley [2]). When $k_1 = k_2 = K$, we denote this by $v_1 \times {}_{K}v_2$.

We define further Kroneckerian products of complete local rings with discrete rings:

Let v_1 be a complete local ring with basic field k_1 and let v_2 be a discrete ring³⁰ which contains a field k_2 . Assume that K is a field which contain both k_1 and k_2 . We define the Kroneckerian product of k_1 -algebra v_1 and discrete k_2 -algebra v_2 over K as follows:

¹⁾ For the definition, see Chevalley [1] or §2 in the present paper.

²⁾ Though Chevalley [2] denotes this ring by $\mathfrak{o}_1 \times_{K} \mathfrak{o}_2$, we dare use a more complicated notation because the product depends on the choice of basic fields.

³⁾ v₂ may be a topological ring which is not discrete; we only regard it as an abstract ring (or a discrete topological ring).