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Previously some interesting results concerning prime ideals in
rings of formal power series were proved by C. Chevalley [1]. In
the present paper, we want to offer a new treatment on the similar
assertions. W e see  on the w ay a  new  resu lt tha t w hen  o  is  a
complete (Noetherian) local integrity domain with a basic field k,
o is separably generated' )  over k if and only if there exists a system
of parameters x „ • •, x„ of o such that o is separable over the ring
k {x„ •-•, x„} (formal power series).

Throughout the present paper, a local ring means a Noetherian
local ring which contains a field.

S l .  Kroneckerian products.
Let o, and o, be complete local rings with basic fields k, and

k, respectively. If K  is a field containing both k , and k„ we can
define the Kroneckerian product of (k-algebra) o, and (k,-algebra)
o, over K , as w as defined by C. Chevalley [2]. W e denote this
Kroneckerian product by o,/k,x K o2/k2

2 ) . (For the detail, see Cheval-
ley  [2 ]). W hen  k,-=k 2 =-K, we denote this by 0, x

W e define further Kroneckerian products o f complete local
rings with discrete rings :

Let o, be a complete local ring with basic field k, and let o„
be  a discrete ring w hich contains a field k . Assume that K  is
a field which contain both k, and k „  We define the Kroneckerian
product o f k,-algebra o, and discrete k,-algebra  o ,  o v e r  K  as
follows

1) For the definition, see Chevalley [1] or §2 in the present paper.
2) Though Chevalley [2] denotes this ring by o, x 1032 , we dare use a more

complicated notation because the product depends on the choice of basic fields.
3) 0 2 may be a topological ring which is not discrete; we only regard it as an

abstract ring (or a discrete topological ring).


