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In the course of study in algebraic geometry, we are frequently
encountered to treat the following problem. Let V  be an abstract
variety, and P , Q  b e  tw o  points on V, then does there exist an
irreducible curve connecting these two points ? It may seem to be
almost self-evident, but it seem s to  us that there is no any proof
in the lite ra tu re . In  th is  note w e shall answ er the above in the
following generalized form.

THEOREM. Let Vn be an abstract variety, and U(i=1, •••, m)
be finite number of subvarieties of dimensions s, respectively, such
that s= max (s ,)  <n -1 . Then there exists an irreducible subvariety
o f V  containing all U4, of any dimension r such that s +  1 < r n - 1 .
M oreover there  ex ists such  one  w hich  is  a lgebra ic  over any
common field of definition for V and U , (i=1,

First w e shall p rove the theorem  in the case w hen V is a
projective model, and then go into the general case.

LEMMA 1. Let V" be a projective model, and P1(i=1, •••, In)
b e  a rb itra ry  points on V. T h e n  th e re  e x is ts  an  irreducible
subvariety of V , containing all P4 ,  o f a n y  dimension r such that

—1. Moreover let k  be a field of definition for V, then
there exists such one which is algebraic over k (P,, ••-, P„,).

P R O O F . It  is sufficient to treat the case — 1 .  First we shall
assume th a t  V  i s  normal. Let t b e  an integer satisfying the
following condition. Let Q  be an arbitrary  point of V, different
from any of P4, there exists a hypersurface of order t - 1, containing
all P„ but not Q . Such integer surely exists, e .g., t=m  + 1 . Put
;l1= E P 4 th e n  the linear system  Li u which consists of the inter-
sections of V with all hypersurfaces of order t  containing all points
in '.)1, will be shown to be noncomposite w ith the pencils. In fact,


