On the characteristic classes of a submanifold

Bv

Seizi TAKIZAWA

(Received April 10, 1954)

In this paper, we first give some remarks on the differential forms introduced in our previous papers¹⁾²⁾, and we show secondly that the forms can also represent the characteristic cohomology classes of tangent and normal bundles over a submanifold imbedded in a Riemannian manifold R^n , by integrating over suitable chains in the tangent frame bundles over R^n .

§ 1. The formulas of obstruction cocycles and deformation cochains

Consider a Riemannian manifold R^n of dimension n which we shall suppose, as in previous papers, to be compact connected orientable and of class ≥ 4 . The group of the tangent sphere bundle \mathfrak{B}^{n-1} over R^n may be the proper orthogonal group, and so any element of the associated principal bundle \mathfrak{B}^0 of \mathfrak{B}^{n-1} can be expressed by an n-frame $Pe_1e_2\cdots e_n$ which determines one of the orientations of R^n .

Take an even permutation σ of n figures $(1, 2, \dots, n)$ and set $\sigma(A) = A'$ $(A = 1, 2, \dots, n)$. Let us denote any element of the tangent (n-q)-frame bundle \mathfrak{B}^{q} associated with \mathfrak{B}^{n-1} by

$$Pe_{q+1}, e_{(q+2)}, \cdots e_n \in \mathfrak{B}^q$$
.

And the natural projection $\mu: \mathfrak{B}^q \to \mathfrak{B}^{q+1}$ is defined by

$$\mu Pe_{(q+1)}, e_{(q+2)}, \cdots e_{n'} = Pe_{(q+2)}, \cdots e_{n'} \in \mathfrak{B}^{q+1}.$$

Then, for any cross-section F into the bundle \mathfrak{B}^{r-1} defined on the

¹⁾ S. Takizawa: On the Stiefel characteristic classes of a Riemannian manifold, these Memoirs, Vol. 28, No. 1 (1953).

²⁾ S. Takizawa: On the primary difference of two frame functions in a Riemannian manifold, Ibid,