MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXIX, Mathematics No. 1, 1955.

Note on the continuation of harmonic and analytic functions

By

Yukio Kusunoki

(Received Oct, 5 1954)

1. In the present paper we shall state some notes concerned with the following problem for which P. J. Myrberg has found a wonderful result¹:

Let the notations HB(AB), HD(AD) denote respectively the classes of bounded harmonic (analytic) functions and of harmonic (analytic) functions with bounded Dirichlet integral. Let R be an arbitrary Riemann surface and E be a closed subset of R. Then what conditions are necessary and sufficient, in order that E should be *removable* for each family defined on R-E (i.e., it would be possible to continuate without singularities all the functions belonged to the class harmonically or analytically onto E)?

2. The case of HB and HD

Lemma.²⁾ Let R be an arbitrary Riemann surface of hyperbolic type. Let $g(P, P_0)$ be the Green's function on R with a pole P_0 and let U be an arbitrary neighbourhood which contains the pole P_0 . Then the Dirichlet integral $D_{R-U}[g]$ of g taken over R-U is finite, especially

$$D_{R-U}[g] = \int_{\partial U} g d\bar{g}$$

if the boundary³⁾ ∂U of U is analytic, where, in general, the barred letter stands for the conjugate harmonic function.

Proof. It suffices to assume that ∂U is analytic. Consider the exhaustion of R

¹⁾ P. J. Myrberg: Über die analytische Fortsetzung von beschränkten Funktionen. Ann. Acad. Sci. Fenn. Ser. A, I. 58 (1949).

²⁾ Cf. Nevanlinna: Uniformisierung. 1953.

³⁾ In the following ∂A denotes the boundary of A.