MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXX, Mathematics No. 3, 1957.

Note on the generator of $\pi_7(SO(n))$

By

Hirosi TODA, Yoshihiro SAITO and Ichiro YOKOTA

(Received June 18, 1957)

The 7th homotopy group $\pi_7(SO(n))$ of the group SO(n) of the rotations in the euclidean *n*-space is determined by Serre [5] without details. Let

 $\sigma: S^7 \rightarrow SO(8) \text{ and } \rho: S^7 \rightarrow SO(7) \subset SO(8)$

be mappings defined by the formulas

 $\sigma(x)(y) = xy$ and $\psi(x)(y) = xy\bar{x}$ for $x, y \in S^7$,

where the multiplication in S^7 is that of the Cayley numbers.

Denote by

$$\sigma_{\mu} \epsilon \pi_{\tau}(SO(n)), n \geq 8 \text{ and } \rho_{\mu} \epsilon \pi_{\tau}(SO(n)), n \geq 7$$

the classes represented by σ and ρ respectively, regarding SO(8) as a subgroup of SO(n), $n \ge 8$ in the natural sense. About the element ρ_7 , we have the knowledge of the result [8]:

 $p_{*l'} \neq 0$

under the (projection) homomorphism $p_*: \pi_7(SO(7)) \rightarrow \pi_7(S^6) \approx Z_2$. From this we can prove that " ρ_7 is not divisible by 2". Furthermore, we shall prove

Theorem. i) $\pi_7(SO(7))$ is a free cyclic group generated by ψ_7 . ii) $\pi_7(SO(n))$, $n \ge 9$, is a free cyclic group generated by σ_n .

As a corollary we have $\pi_7(SO(8)) \approx Z + Z = \{\sigma_s\} + \{\rho_s\}$.

The proof of the theorem is mainly devoted to the following simple lemma and results on $\pi_6(S^3)$.

SO(7) is the set of all $\alpha \in SO(8)$ such that α fixes the unit. Spin(7) is the set of all $\tilde{\alpha} \in SO(8)$ such that for some $\alpha \in SO(7)$ the relation

$$\alpha(x)\alpha(y) = \alpha(xy)$$