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The 7th homotopy group 7.(SO(n)) of the group SO(n) of
the rotations in the euclidean n-space is determined by Serre [5]
without details. Let

o:S">S0O(8) and p:S*™—>SO(7) c SO(8)
be mappings defined by the formulas
o (x) (y) =xy and ¢ (*) (y) =xy% for x, yeS’,

where the multiplication in S’ is that of the Cayley numbers.
Denote by

o1 (SO(n)), n=8 and p,em, (SO(n)), n=7

the classes represented by o and ¢ respectively, regarding SO (8)
as a subgroup of SO(n), n==8 in the natural sense. About the
element p,, we have the knowledge of the result [8]:

p*l"’l?é O

under the (projection) homomorphism py : 7.(SO(7)) >7.(S%) ~Z,.
From this we can prove that o, is not divisible by 2”. Further-
more, we shall prove

Theorem. 1) 7;(SO(7)) is a free cyclic group generated by p,.
i) m(SOm)), n=9, is a free cyclic group generated by o,.

As a corollary we have 7.(SO(8)) ~Z+Z={o.} + {15} .

The proof of the theorem is mainly devoted to the following
simple lemma and results on 7,(S5%).

SO (7) is the set of all aeSO(8) such that a fixes the unit.
Spin(7) is the set of all eSO (8) such that for some aeSO(7) the
relation

a(x) a(y) =a(xy)



