p-primary components of homotopy groups

I. Exact sequences in Steenrod algebra

By

Hirosi Toda

(Received June 5, 1958)

The structure of the Steenrod algebra $\mathscr{S}^* \mod p$ [1] gives important tools for the calculation of the homotopy groups. In this section, the exactness of the several \mathscr{S}^* -homomorphisms is studied, and it will be applied to prove the triviality of mod p Hopf invariant in the next section and also to verify the homotopy groups in those sections which follow further.

§ Notations.

Throughout this paper, p denotes an odd prime and \mathscr{S}^* denotes the Steenrod algebra $\operatorname{mod} p$ [1] [3]. \mathscr{S}^* is a graded Z_p -algebra $\sum_i \mathscr{S}^i$ which is generated multiplicatively by the Bockstein operator $\Delta \in \mathscr{S}^1$ and Steenrod's reduced powers $\mathscr{D}^t \in \mathscr{S}^{2t(p-1)}$, $t=0,1,2,\cdots$.

For the simplicity of the descriptions, we shall use the following notations.

(1.1) $\mathscr{T}(\Delta^{\mathfrak{e}_0}, r_1, \Delta^{\mathfrak{e}_1}, r_2, \cdots, r_n, \Delta^{\mathfrak{e}_n}) = \Delta^{\mathfrak{e}_0} \mathscr{T}^{r_1} \Delta^{\mathfrak{e}_1} \mathscr{T}^{r_2} \cdots \mathscr{T}^{r_n} \Delta^{\mathfrak{e}_n},$ where ε_i and r_i are non-negative integers. From the relation

$$\Delta^2 = \Delta \Delta = 0$$
.

the monomial (1.1) vanishes if one of $\varepsilon_i \geq 2$. If $\varepsilon_i = 0$, we may omit Δ^{ε_i} in (1.1) since Δ° means the identity. If $\varepsilon_i = 1$, we write Δ^{ε_i} by Δ . Also if $r_i = 0$, then we may replace " $\Delta^{\varepsilon_{i-1}}$, r_i , Δ^{ε_i} " and " $\Delta^{\varepsilon_{i-1}} \mathscr{P}^{r_i} \Delta^{\varepsilon_i}$ " by " $\Delta^{\varepsilon_{i-1}+\varepsilon_i}$ " since \mathscr{P}° is the identity.

A monomial (1.1) is said to be *admissible* if ε_i are 0 or 1, $r_n > 0$ and if $r_i \ge pr_{i+1} + \varepsilon_i$ for $i = 1, 2, \dots, n-1$. Then the admissible