MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXXII, Mathematics No. 1, 1959.

On the theory of Henselian rings, III.*

By

Masayoshi NAGATA

(Received Dec. 27, 1958)

In the paper [1], we defined the notion of Henselizations of normal quasi-local rings and proved generalized Hensel lemma in Henselian valuation rings, and in the paper [2] we proved the properties of Henselizations of normal quasi-local rings and of quasi-local integral domains.

In the present paper, we shall define the Henselization of an arbitrary quasi-local rings and we shall prove that if a Henselian ring \mathfrak{h} dominates a quasi-local ring \mathfrak{o} then there exists one and only one \mathfrak{o} -homomorphism from the Henselization of \mathfrak{o} into \mathfrak{h} . Besides some other properties of Henselizations, we shall discuss unramifiedness. On the other hand, since the paper [2] contains some errors, corrections to the paper will be given in § 1.

\S 1. Corrections to the paper [2].

(1) In $\S4$ ([2, Chap. II]), we stated 4 lemmes (Lemmas 4–7). Among them, Lemma 6 is not correct (the others are correct).

What we should prove in §4 are really as follows:

Let \mathfrak{o} be a normal quasi-local ring with maximal ideal \mathfrak{P} and let \mathfrak{q} be a prime ideal of \mathfrak{o} . Let $\overline{\mathfrak{o}}$ be an almost finite separable normal extension of \mathfrak{o} with Galois group G and let $\overline{\mathfrak{p}}$ be a maximal ideal of $\overline{\mathfrak{o}}$. Let $\overline{\mathfrak{o}}$ be the decomposition ring of $\overline{\mathfrak{p}}$ and set $\overline{\mathfrak{p}} = \overline{\mathfrak{p}} \cap \overline{\mathfrak{o}}$, $\mathfrak{o}^* = \widetilde{\mathfrak{o}}_{\overline{\mathfrak{p}}}$. We denote by \mathfrak{q}^* and S an arbitrary prime divisor of \mathfrak{qo}^* and the complement of \mathfrak{q} in \mathfrak{o} . Then, (i) $\mathfrak{q}^* \cap \mathfrak{o} = \mathfrak{q}$, (ii) $\mathfrak{qo}^*_{\mathfrak{q}^*} = \mathfrak{q}^*\mathfrak{o}^*_{\mathfrak{q}^*}$, (iii) $\mathfrak{o}^*_{S}/\mathfrak{qo}^*_{S}$ is Noetherian and (iv) \mathfrak{qo}^* is the intersection of all the \mathfrak{q}^* .

(i) was proved in Lemma 4 (in a more general form) and the

^{*} The work was supported by a research grant of National Science Foundation.