p-primary components of homotopy groups

IV. Compositions and toric constructions

Ву

Hirosi Toda

(Received September 5, 1959)

Here we shall use the following notations. $G_k = \pi_k(\mathfrak{S})$ is the k-th stable homotopy group of the sphere and $\pi_k(\mathfrak{S};p)$ is its p-primary component. $\alpha \circ \beta \in G_{h+k}$ indicates the composition of $\alpha \in G_h$ and $\beta \in G_k$. The toric construction

$$\{\alpha, \beta, \gamma\} \in G_{h+k+l+1}/(\alpha \circ G_{k+l+1} + \gamma \circ G_{h+k+1})$$

will be defined if $\alpha \in G_h$, $\beta \in G_k$ and $\gamma \in G_l$ satisfy the condition $\alpha \circ \beta = \beta \circ \gamma = 0$. This is different only in sign to one given in Chapter 5 of [4]. Denote by $\alpha_1 \in G_{2p-3}$ a generator of $\pi_{2p-3}(\mathfrak{S};p) = Z_p$ and choose elements α_t of $G_{2l(p-1)-1}$ inductively such that $\alpha_t \in \{\alpha_{t-1}, p_l, \alpha_1\}$. Denote by β_s , $1 \leq s < p$, a generator of $\pi_{2(s_p+s-1)(p-1)-2}(\mathfrak{S};p) = Z_p$, and denote by β_1^r the r-fold iterated composition $\beta_1 \circ \cdots \circ \beta_1$ of β_1 . There exist elements α'_{rp} , $1 \leq r < p$, such that $p \alpha'_{rp} = \alpha_{rp}$ for $1 \leq r < p-1$ and $p \alpha'_{(p-1)p} = \alpha_{(p-1)p} + x \alpha_1 \circ \beta_1^{p-1}$ for some integer x. Then these elements and their compositions generate the p-components $\pi_k(\mathfrak{S};p)$ of the stable groups G_k for $k \leq 2p^2(p-1)-3$.

Theorem 4.15. (cf. Theorem 3.13 of [6]).

$$\begin{split} \pi_{2r_{p}(p-1)-1}(\mathfrak{S};p) &= Z_{p^{2}} &= \{\alpha'_{r_{p}}\} & \text{for } 1 \leq r < p-1 \text{,} \\ &= Z_{p^{2}} + Z_{p} = \{\alpha'_{(p-1)}_{p}\} + \{\alpha_{1} \circ \beta_{1}^{p-1}\} & \text{for } r = p-1 \text{,} \\ \pi_{2t(p-1)-1}(\mathfrak{S};p) &= Z_{p} = \{\alpha_{t}\} & \text{for } 1 \leq t < p^{2} \text{ and } t \equiv 0 \pmod{p} \text{,} \\ \pi_{2(r_{p}+s)(p-1)-2(r-s)}(\mathfrak{S};p) &= Z_{p} = \{\beta_{1}^{r-s-1} \circ \beta_{s+1}\} & \text{for } 0 \leq s < r \leq p-1 \text{,} \\ \pi_{2(r_{p}+s+1)(p-1)-2(r-s)-1}(\mathfrak{S};p) &= Z_{p} = \{\alpha_{1} \circ \beta_{1}^{r-s-1} \circ \beta_{s+1}\} & \text{for } 0 \leq s < r \leq p-1 \text{,} \\ for &0 \leq s < r \leq p-1 \text{ and } r-s := p-1 \text{,} \end{split}$$