MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXXIII, Mathematics No. 2, 1960.

A note on the pseudo-compactness of the product of two spaces

By

Hisahiro TAMANO

(Received July 10, 1960)

As is well known, the Stone-Čech compactification of a product space is not generally identical (more precisely, homeomorphic) with the product of the Stone-Čech compactifications of coordinate spaces. M. Henriksen and J. R. Isbell [5] pointed out that the relation $\beta(X \times Y) = \beta X \times \beta Y^{1}$ implies the pseudo-compactness of the product $X \times Y^{2.3}$. Recently, the converse has been established by I. Glicksberg [4]. He proved more generally that the relation $\beta(\Pi X_{\alpha}) = \Pi \beta X_{\alpha}$ holds true if and only if ΠX_{α}^{4} is pseudo-compact.

In this note, we shall restrict ourselves to consider the product of two spaces, and give some conditions equivalent to that the relation $\beta(X \times Y) = \beta X \times \beta Y$ hold. We shall show that $\beta(X \times Y) =$ $\beta X \times \beta Y$ if and only if the tensor product $C^*(X) \otimes C^*(Y)$ is dense in $C^*(X \times Y)$.

The pseudo-compactness of the product $X \times Y$ implies the pseudo-compactness of each coordinate space. However, it is not true that the product of pseudo-compact spaces must be pseudo-compact⁵. Several additional conditions sufficient to insure the pseudo-compactness of the product of pseudo-compact spaces are given and discussed in [1], [4] and [5]. We shall generalize those results in somewhat unific form.

¹⁾ Throughout, we shall consider X as a subspace of βX .

²⁾ The trivial case that X or Y is a finite set will be excluded throughout. If X is a finite set, then $\beta(X \times Y) = \beta X \times \beta Y$ for any space Y.

³⁾ T. Ishiwata [7] has proved that if $\beta(X \times X) = \beta X \times \beta X$, then X is totally bounded for any uniform structure of X. (X is pseudo-compact if and only if it is totally bounded for any uniform structure of X. C. f. T. Ishiwata: On uniform spaces, Sugaku Kenkyuroku, Vol. 2 (1953) (in Japanese).)

⁴⁾ ΠX_{α} denotes the product of X_{α} .

⁵⁾ C.f. [9], [10].