MEMOIRS OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A Vol. XXXIII, Mathematics No. 3, 1961.

On the construction of two-dimensional diffusion processes satisfying Wentzell's boundary conditions and its application to boundary value problems

By

Nobuyuki IKEDA

(Received Jan. 15, 1961)

0. Introduction. Consider a Markov process on a regular domain \overline{D} in R^2 whose generator is given as an elliptic differential operator

in D associated with the boundary condition

$$\delta(x, y) \lim_{(x', y') \to (x, y)} Au(x, y) = \frac{\partial}{\partial \xi^{\sharp_2}(x, y)} u(x, y) + M(x, y) \frac{\partial}{\partial \xi^{\sharp_1}(x, y)} u(x, y) + V(x, y)$$

$$\times \frac{\partial^2}{\partial \xi^{\sharp_1}(x, y)} \frac{\partial}{\partial \xi^{\sharp_1}(x, y)} u(x, y) + \int_{\partial D} \left\{ u(x + x', y + y') - u(x, y) - \frac{\partial}{\partial \xi^{\sharp_1}(x, y)} u(x, y) \right\}$$

$$\times \frac{\xi^{\sharp_1}}{\xi^{\sharp_1}(x, y)} (x', y') \left\{ \nu_{(x, y)}(dx' dy'), \quad \text{for} \quad u(x, y) \in C^2, \ (x, y) \in \partial D \right\},$$

where $\delta(x, y) \equiv 0$ or 1, V(x, y) is non-negative and $\nu_{(x,y)}(\cdot)$ is a measure on ∂D satisfying $\nu_{(x,y)}(\partial D - U_{(x,y)}) < +\infty$ and $\int_{\partial D} (\xi_{(x,y)}^1(x', y'))^2 \nu_{(x,y)}(dx'dy') < +\infty$ for any neighbourhood $U_{(x,y)}$ of (x, y). $\{\xi_{(x,y)}^i(x', y'), i=1, 2\}$ is a C^2 -function on \overline{D} and is a local coordinate in $U_{(x,y)}$ satisfying: $\xi_{(x,y)}^2(x', y')=0$ if and only if $(x', y') \in \partial D$ for $(x', y') \in U_{(x,y)}, \xi_{(x,y)}^2(x', y') + (\xi_{(x,y)}^1(x', y'))^2 > 0$ if and only if (x', y') = (x, y). It is easily seen from A. D. Wentzell's results [24] that this boundary condition is of the most general type provided