Homotopy groups of symplectic groups

Ву

Mamoru Mimura and Hirosi Toda

(Received Jan. 17, 1964)

§1. Introduction

The present paper is one of our series on the homotopy groups of simple Lie groups, following from the previous paper [7].

We shall consider the homotopy groups $\pi_i(Sp(n))$ of symplectic groups Sp(n).

When $i \le 4n+1$, the groups are stable and computed by Bott $\lceil 3 \rceil$:

$$\pi_i(Sp(n)) \cong \begin{cases} Z & i \equiv 3,7 \pmod{8}, & i \leq 4n+1, \\ Z_2 & i \equiv 4,5 \pmod{8}, & i \leq 4n+1, \\ 0 & i \equiv 0,1,2,6 \pmod{8}, & i \leq 4n+1. \end{cases}$$

For almost stable cases i=4n+2, 4n+3, 4n+4, the following results are obtained (Theorem 2.2).

$$\pi_{4n+2}(Sp(n)) \cong \left\{ egin{array}{ll} Z_{2 \cdot (2n+1)!} & ext{for odd } n \,, \ & Z_{(2n+1)!} & ext{for even } n \,, \ & & & & & & & & \\ \pi_{4n+3}(Sp(n)) \cong & Z_2 \,, & & & & & & & \\ \pi_{4n+4}(Sp(n)) \cong \left\{ egin{array}{ll} Z_2 & ext{for odd } n \,, \ & & & & & & \\ Z_2 \oplus Z_2 & ext{for even } n \,. \end{array}
ight.$$

These results were already computed in [4], except the last one which will be determined in §2 by use of secondary compositions.

For $i \le 23$, the groups $\pi_i(Sp(1)) = \pi_i(S^3)$ and $\pi_i(Sp(2))$ are determined in [11], [6] and [7]. Then the following table of $\pi_i(Sp(n))$ is established by the computation of the groups $\pi_i(Sp(3))$, $17 \le i \le 23$, and $\pi_i(Sp(4))$, $21 \le i \le 24$. The computation will be given in § 3