Atomic Quasi-Injective Modules

By

Edward T. WONG*

(Received June 10, 1964)

1. Quasi-injective modules. *R* is an associative ring with an indentity element, all *R*-modules considered here are left unitary modules.

Given an R-module M and submodules N_1 , N_2 of M, N_2 is called an essential extension of N_1 or N_1 is essential in N_2 if

(1) $N_1 \subset N_2$ and (2) $R_x \cap N_1 \neq 0$ for every nonzero x in N_2 .

Condition (2) is equivalent to that every nonzero submodule in N_2 has nonzero intersection with N_1 . If N_2 is an essential extension of N_1 then the left ideal $(N_1: x) = \{r \in R | rx \in N_1\}$ is essential in R for every x in N_2 (considering R as a left R-module).

Every submodule of M has a maximal essential extension in M. If the singular submodule M^{\blacktriangle} of M is zero then for every submodule N, N^s is the unique maximal essential extension of N in M, where

 $N^{s} = \{m \in M | (N:m) \text{ is essential in } R\}$ $M^{\blacktriangle} = \{m \in M | (0:m) \text{ is essential in } R\}.$

The verification of N^s being the unique maximal essential extension of N in M in the case of $M^{\blacktriangle}=0$ is straight forward.

In this paper we assume every *R*-module has zero singular submodule unless stated otherwise. Of course if N_1 is essential in N_2 then $N_1^{\blacktriangle} = 0$ if and only if $N_2^{\bigstar} = 0$.

In [2] we call an *R*-module *M* quasi-injective if for any submodule *N* of *M* and any $f \in \text{Hom}_{R}(N, M)$, *f* can be extended to an element of $\text{Hom}_{R}(M, M)$. An injective module of course is quasi-injective.

^{*} The author is a National Science Foundation Faculty Fellow of U.S.A., 1963-64.