On general boundary value problem for parabolic equations

Dedicated to Prof. A. Kobori on his 60th birthday

By
Reiko Arima
(Received Sep. 10, 1964)

Let us consider the parabolic equation
(P.1) $\frac{\partial}{\partial t} u(t, x)=A\left(t, x ; \frac{\partial}{\partial x}\right) u(t, x), x \in \Omega, 0<t<T(<+\infty)$, or more simply

$$
L u \equiv\left(\frac{\partial}{\partial t}-A\right) u=0
$$

where

$$
A=\sum_{|V| \leqq 2 b} a_{.}(t, x)\left(\frac{\partial}{\partial x}\right)^{\nu},
$$

and Ω is a domain in R^{n} surrounded by a hypersurface S. Our problem is the following: Given $f_{j}(t, x), j=1,2, \cdots, b$, on $(0, T) \times S$, find a solution $u(t, x)$ of (P.1) satisfying

$$
\begin{equation*}
B_{j} u=f_{j} \quad(j=1,2, \cdots, b) \text { on } S, 0<t<T \tag{P.2}
\end{equation*}
$$

and $u(0, x)=\lim _{t \rightarrow+0} u(t, x)=0$, where

$$
B_{j}\left(t, x ; \frac{\partial}{\partial x}\right)=\sum_{v: \sum_{r_{j}}} b_{j v}(t, x)\left(\frac{\partial}{\partial x}\right)^{\nu}, \quad 0 \leqq r_{j} \leqq 2 b-1 .
$$

Recently Eidelman has treated this problem ([2], [3], [4])*). Here we shall follow his method indicated in ([2]). More precisely,

[^0]
[^0]: *) In the case where Ω is a convex domain, the corresponding result has been announced by Eidelman.

