Extremal length and Kuramochi boundary

Dedicated to Professor A. Kobori on his 60th birthday

By

Tatsuo Fuji'i'e

(Received Sept. 8, 1964)

1. Introduction

The notion of extremal length was first introduced by Ahlfors and Beurling [1] and various equivalent or extended definitions of extremal length were considered by J. Hersch [4], J. Jenkins [5] and others. Let Γ be a family of locally rectifiable curves given on a domain D of a Riemann surface R, and $\rho(z)|dz|$ be a conformal metric on D with non-negative covariant $\rho(z)$ such that $\int_{\gamma} \rho |dz|$ is defined (possibly ∞) for all $\gamma \in \Gamma$. According to Jenkins, $\rho(z)$ will be said to be admissible for the problem of extremal length of Γ (or briefly "admissible") when $A(\rho) = \iint_{D} \rho^2(z) dx dy \leq 1$, and, putting $L_{\rho}(\Gamma) = \inf_{\gamma \in \Gamma} \int_{\gamma} \rho |dz|$ for each admissible $\rho(z)|dz|$, the extremal length of Γ is defined as the square of $\sup_{\rho} L_{\rho}(\Gamma)$ when the supremum is taken over all admissible conformal metrics. This definition of extremal length is equivalent to that of Ahlfors-Beurling and that of Hersch when $\rho(z)$ is limited in the same class of measurability.

By this definition of extremal length we know at once that extremal length of the family Γ_0 of all locally rectifiable curves whose ρ -length are infinite for a certain admissible conformal metric $\rho(z)|dz|$ is infinite, because $\lambda(\Gamma)^{1/2} = \sup L_{\rho}(\Gamma_0) \ge L_{\rho}(\Gamma_0) = \infty$.

Especially, if we take the family Γ_1 of divergent curves in R-K (K: compact domain in R) which start from ∂K and along