Remarks on the harmonic boundary of a plane domain

Dedicated to Professor A. Kobori on his 60th birthday

By

Shin'ichi MORI

(Received Sept. 18, 1964)

Introduction. We denote by R_{*}^{*} the compactification of an open disc R and by Δ_{F} the harmonic boundary of R, here the compactification is the one studied in the former paper [5]. In the first chapter, we shall study the relation between Δ_{F} and the Martin minimal boundary of R in connection with the harmonic measure on R. In the second chapter, we shall treat the multiply connected domain, and a certain theorem with respect to the cluster sets will be studied from the view point of the compactification.

1. Martin minimal boundary Δ_1 and Δ_F . Let R be an open Riemann surface which admits the non-constant bounded harmonic functions, and let Δ_1 be the Martin minimal boundary of R. At first, we shall treat some lemmas with respect to Δ_1 to make use of them later on. These lemmas were given by C. Costantinescu and A. Cornea [1] in general case.

Lemma 1. Let D be a non-compact subregion of R and A be a subset of Δ_1 such as $A = \{s \in \Delta_1; I_D K_S > 0\}$, then it holds that

$$1 = \int_{A} I_D K_s(p) dX(s) + \int_{\partial D} d\omega_p(\tilde{p})$$

for any point p in D.

Proof. According to [1], $u = I_D u + H_D^u$ for any $u \in HP$. From this, we know that $K_s(p) = H_D^{\kappa_s}(p)$ $(p \in D)$ for each $s \in \Delta_1 - A$. In