On stationary solutions of a stochastic differential equation*

Dedicated to Professor A. Kobori on his sixtieth birthday

By

Kiyosi Itô and Makiko Nisio

(Received July, 1964)

CONTENTS	8	PAGI
1	Introduction	1
2	Inequalities Concerning Stochastic Integrals	5
3	Totally Bounded Sets of Stochastic Processes	7
4	The Approximate Sum of a Stochastic Integral	11
5	One-sided Solutions (Theorem 1)	13
6	Stationary Solutions (1) (Theorem 2)	19
7	Stationary Solutions (2) (Theorem 3)	25
8	Stationary Solutions (3) (Theorem 4, 5, 6 and 7)	
9	Borel Algebras Related to the Stationary Solutions	
	(Theorems 8, 9 and 10)	38
10	Lipschitz Condition (Theorems 11, 12 and 13)	4 0
11	Linear Coefficients (1) (Theorems 14 and 15)	47
12	Linear Coefficients (2) (Theorem 16)	51
13	Diffusion (Theorems 17, 18 and 19)	56
14	A Modified Girsanov Example	
15	A Deterministic Example	72
16	A Two-dimensional Example	
	Bibliography	74

1. Introduction

To begin with, let us introduce some preliminary notions. Given a stochastic process X(t), $-\infty < t < \infty$, $\mathcal{B}_{uv}(X)$ denotes the least Borel algebra for which X(t) is measurable for every $t \in [u, v]$.

^{*} This work was supported in part by NSF 16319, NONR 225(28), AFOSR 49(638)-1339 and the National Institutes of Health Grant 10452-02 at Stanford University; by NONR 562(29) at Brown University.