Note on formally projective modules*

By

Satoshi Suzuki

(Received April 7, 1966)

§1. Let R be a commutative ring with units and m an ideal of R. Let M be an R-module. For the simplicity we assume that m has a finite base. We consider the m-adic topology on both R and M. A. Grothendieck introduced the notion of formally projective modules which can simply be stated in our case as follows (19.2, Chap. 0_{IV} [1]).

Definition 1: M is called a formally projective module if $M/\mathfrak{m}^n M$ is a projective R/\mathfrak{m}^n -module for every $n=1, 2, 3, \cdots$.

On the other hand the authur introduced the notion of m-adic free modules (Def. 1, 2, Part I, [2]), i.e.

Definition 2: M is called an m-adic free module if M is a Hausdorff m-adic module and contains a set of elements $\{\alpha_i\}_{i\in I}$ such that $M/\mathfrak{m}^n M$ is a free R/\mathfrak{m}^n -module with a free basis {the residue clase of $a_i \mod \mathfrak{m}^n M$ } $_{i\in I}$ for every $n=1, 2, 3, \cdots$. In this case we call $\{\alpha_i\}_{i\in I}$ m-adic free basis of M.

We introduce here a generalized notion of m-adic free modules.

Definition 3: M is called a weakely m-adic free module if

(a) $M/\mathfrak{m}^n M$ is a free R/\mathfrak{m}^n -module for every $n=1, 2, 3, \cdots$, or equivalently

(b) the m-adic completion of M is isomorphic to the m-adic completion of a free R-module.

As for the equivalence of (a) and (b), we shall see it afterwards. m-adic free modules are weakly m-adic free modules.

 $[\]ast$ This works was supported by the U.S. National Science Foundation, Grant GP-4249.