Rational sections and Chern classes of vector bundles*

bv

Hiroshi Yamada

(Received December 5, 1966)

Let \mathcal{E} be a quasi-coherent sheaf, of finite type, on an integral prescheme X, and denote by $\mathbf{V}(\mathcal{E})$, $\mathbf{P}(\mathcal{E})$ the vector and projective fibres of \mathcal{E} respectively. Then each non-zero rational section ω of $\mathbf{V}(\mathcal{E})$ over X defines a rational section $\bar{\omega}$ of $\mathbf{P}(\mathcal{E})$ over X (section 2), and we can construct a closed subscheme $\langle \omega \rangle$ of X whose points are the non-regular points of $\bar{\omega}$ (Prop. 5). Denote by $[\omega]$ the X-prescheme obtained by blowing up centered at $\langle \omega \rangle$. On the other hand we can construct a quasi-coherent fractional Ideal $\mathcal{O}_X(\omega)$ of the sheaf of rational functions $\mathcal{R}(X)$ of X which is invertible when X is UFD (Cor. of Prop.4) and which corresponds to the Cartier divisor of the rational section ω .

In this note, we shall prove some relations between these schemes or sheaves (Th. 1.2). In the case that X is a non-singular quasi-projective algebraic scheme, they give an explicite formula of Chern classes of vector bundles of rank 2 (Cor. of Th. 2'). And, as a special case, if X is a surface and $\mathbf{V}(\mathcal{E})$ is the bundles of simple differentials, then our formula proves that the Severi-series of X coincides with the second Chern class $c_2(X)$ of X (last Remark).

1. Rational maps and rational functions (EGA. I.7) Let X and Y be S-preschemes, and \mathfrak{U}_x the set of dense open subsets of X; then the family of sets of S-mophisms $(\operatorname{Hom}_s(U,Y))_{U \in \mathfrak{U}_X}$

 $^{^{*)}}$ This work was partially supported by a research grant of the Sakkokai Foundation.