Jacobson-Bourbaki Correspondence

By

Edward T. Wong

(Communicated by Prof. M. Nagata, January 26, 1967)

P is a field. Considering P as an abelian group with respect to its addition, let R be the ring of all endomorphisms of P into P. R is a right P-vector space in the obvious way. A subring \mathfrak{A} of R containing the identity mapping is called a P-subring of R if \mathfrak{A} is also a P-subspace of R. If \mathfrak{A} is a P-subring of R, let $\Delta_{\mathfrak{A}} = \{ \alpha \in R \mid \alpha A = A\alpha \}, \text{ for all } A \in \mathfrak{A}, \text{ the centralizer of } \mathfrak{A}. \quad \Delta_{\mathfrak{A}} \text{ can}$ be considered as a subfield of P. When P is considered as a left $\Delta_{\mathfrak{A}}$ vector space, \mathfrak{A} is a dense ring of linear transformations of P. This follows from the fact that, $P \subset \mathfrak{A}$, $x \in P$, $x \neq 0$, $x \mathfrak{A} = P$; and the general density theorem [2]. The Jacobson-Bourbaki Theorem [1, p. 22] states that: "If the dimension of a P-subring $\mathfrak A$ over P is $n < \infty$, then the dimension of P over $\Delta_{\mathfrak A}$ is also nand $\mathfrak{A} = \mathfrak{L}_{\Delta_{\mathfrak{N}}}(P, P)$, the complete ring of linear transformations of P over $\Delta_{\mathfrak{A}}$." From this result, one can set up an one-to-one correspondence (Jacobson-Bourbaki Correspondence) between the set of all P-subrings of R which are finite dimensional over P and the set of all subfields of P which are finite co-dimensional in P [1, p. 24]. Furthermore the classical Galois theorem about finite group of automorphisms of a field can be obtained from this approach $\lceil 1, p. 29 \rceil$.

In this paper, we are going to extend this correspondence further.

A ring S is called a *left* (right) self-injective ring if S is a left (right) injective module over itself. A left (right) self-injective ring is also called a *left* (right) quasi-Frobenius ring.

A ring Q is called a *left quotient ring* of a subring T of Q,