On the unique factorization theorem for formal power series

By

Hajime NISHIMURA

(Received Aug. 25, 1967)

Let $R\{x_1, \dots, x_n\}$ be the formal power series ring in a finite number of independent variables x_1, \dots, x_n with coefficient ring R. It is known that even if R is a unique factorization domain $R\{x_1\}$ is not always so.¹⁾

We shall denote the following condition for a ring² R by (*):

(*) $R\{x_1, \dots, x_n\}$ is a unique factorization domain, for any n (finite).

It is noted that (*) is satisfied by a regular semi-local integral domain R, which follows from the fact that a regular local ring is a unique factorization domain. This naturally raises the question whether the unique factorization theorem still holds for the case of infinitely many variables, provided coefficient domain R satisfies (*). The question is only partially answered below (Theorem 1), where notion of formal power series is taken in a wider sense than the usual one.

As for the usual formal power series, what we show is that if R is a Krull ring then $R\{x_1, x_2, \dots, x_n, \dots\}$ is also a Krull ring, which is an application of Theorem 1.

The auther wishes to express his sincere thanks to Prof. M. Nagata for his valuable suggestion and encouragement.

1. Let R be a ring, X be a set of indeterminates, card. $X = \aleph^*$. As usual, by a X-monomial $(x)^e$ of degree n $(n=0, 1, 2, \cdots)$ we mean

¹⁾ See P. Samuel, Anneaux factoriels, Publicações da Sociedade de Matemática de São Paulo, 1963, pp. 58-63.

²⁾ A ring in this note always means a commutative ring with 1.