J. Math. Kyoto Univ. 8-3 (1968) 365-410

Branching Markov processes II

By

Nobuyuki Ikeda, Masao Nagasawa and Shinzo Watanabe

(Received May 21, 1968)

The branching property of semi-groups and branching Markov processes were treated in Part I but the problem of construction was not discussed. We shall construct (X^0, π) -branching Markov processes in a probabilistic way. We shall first give a theorem on constructing a strong Markov process from a given Markov process by a piecing out procedure generalizing a method of Volkonsky [44], where a lemma on Markov time due to Courrège and Priouret [4] plays an important role. In chapter III, we shall apply the theorem to obtain (X^0, π) -branching Markov processes and give several examples.

The numbering continues that of the first part, pp. 237-278 of this journal. References such as [1] are to the list at the end of the first part.

II. Construction of a Markov process by piecing out

§2.1. Construction

Let *E* be a locally compact Hausdorff space with a countable open base, (W, \mathcal{B}) be a measurable space on which a system $\{P_x, x \in E\}$ of [probability measures is given, and $\mu(w, dy)$ be a stochastic kernal on $(W, \mathcal{B}) \times (E, \mathcal{B}(E))$.¹⁾ Let $\mathcal{Q} = W \times E$, $\mathcal{F} = \mathcal{B} \otimes \mathcal{B}(E)$ and

¹⁾ We assume that, for every $B \in \mathcal{B}$, $P_x[B]$ is $\mathcal{B}(E)$ -measurable in x. A stochastic kernel $\mu(w, dy)$ is a kernel such that for each w it is a probability in dy.