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The following fact was proved by Gutwirth? in the classical case:

Let D be a line on P? and consider the affine plane S=P?—D.
Assume that C is an irreducible curve defined over a ground field K
and of degree, say d, on P? such that CN\S is biregular to an affine
line. Then CND contains a unique ordinary point, say P. If we look
at also infinitely near points, then all of singular points, say Py, .--, P,
are arranged so that (i) P=P; and (ii) each P;,; is an infinitely near
point of P; of order 1. Let m; be the effective multiplicity of P; on
C (that is, the multiplicity of P; on the proper transform of C by
successive quadratic dilatations with centers Py, ..., P;_;). On the other
hand, let f(x, y) be the irreducible polynomial which defines CN\S in
the affine coordinate ring K[, y] of S. Then

Theorem. Consider the linear system L of curves of degree d on
P? which goes through Y, m;P;. If dimL>1, then d is a multiple
Of d—ml.

This fact implies also, under the same assumption, that there is a
polynomial g(x, ) such that K[x, y]=K[f, g].

The purpose of the present paper is to give a proof of the above
theorem without any restriction on the ground field K. We add also
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