J. Math. Kyoto Univ. (JMKYAZ) 11-1 (1971) 149-154

A theorem of Gutwirth

By

Masayoshi NAGATA

(Received Sept. 1, 1970)

The following fact was proved by Gutwirth¹⁾ in the classical case: Let D be a line on P^2 and consider the affine plane $S=P^2-D$. Assume that C is an irreducible curve defined over a ground field Kand of degree, say d, on P^2 such that $C \cap S$ is biregular to an affine line. Then $C \cap D$ contains a unique ordinary point, say P. If we look at also infinitely near points, then all of singular points, say P_1, \ldots, P_n are arranged so that (i) $P=P_1$ and (ii) each P_{i+1} is an infinitely near point of P_i of order 1. Let m_i be the effective multiplicity of P_i on C (that is, the multiplicity of P_i on the proper transform of C by successive quadratic dilatations with centers P_1, \ldots, P_{i-1}). On the other hand, let f(x, y) be the irreducible polynomial which defines $C \cap S$ in the affine coordinate ring K[x, y] of S. Then

Theorem. Consider the linear system L of curves of degree d on P^2 which goes through $\sum m_i P_i$. If dim $L \ge 1$, then d is a multiple of $d-m_1$.

This fact implies also, under the same assumption, that there is a polynomial g(x, y) such that K[x, y] = K[f, g].

The purpose of the present paper is to give a proof of the above theorem without any restriction on the ground field K. We add also

¹⁾ A. Gutwirth, An inequality for certain pencils of plane curves, Proc. Amer. Math. Soc. Vol. 12 (1961) pp. 631-639