The decomposition of L^2 ($\Gamma \setminus SL(2, R)$) and Teichmüller spaces

By

Noriaki Kawanaka

(Communicated by Professor Yoshizawa, July 18, 1970)

§0. Introduction

Let *H* be the complex upper half plane and let Γ be a discrete subgroup of the group *G* of conformal automorphisms of *H*. We assume that $\Gamma \setminus H$ is compact.

For each unitary matrix representation \mathfrak{x} of Γ , we consider an eigenvalue problem (called the (Γ, \mathfrak{x}) -eigenvalue problem in §1,) following [S]. The spectra of this eigenvalue problem and its generalizations have been investigated since the famous paper of A. Selberg [S] appeared in 1956. But, at present, not much is known even in the above special case.

In this paper, we want to study "How do the spectra of (Γ, α) -problem behave when Γ varies?"

There is another (more group-theoretical) interpretation of our problem. We give it in the following.

Let G, Γ, χ be as above and let $U = \operatorname{Ind} \chi$ be the unitary representation of G induced from χ . As is well known, U can be decomposed into the discrete sum $\sum_{i} \bigoplus U_{i}$ of irreducible unitary representations U_{i} of G. We call the set $S_{U} = \{U_{i}; i=1, 2, ...\}$ the spectra of $U = \operatorname{Ind} \chi$ and decompose it into the disjoint union of two subsets, the C-part S_{U}^{C} and the D-part S_{U}^{D} , where S_{U}^{C} consists of those elements of S_{U} con-