Notes on classification of Riemann surfaces

By

Shinji Yamashita

(Communicated by Professor Kusunoki, November 24, 1970)

1. Introduction.

To classify Riemann surfaces (simply, "surfaces") by Hardy classes seems to have long been an open question. Recently Heins solved this problem thoroughly in his Springer lecture note [2, pp. 34-51]. The objective of the present article is to show that surfaces R of class O_{H_p} ($0) or of class <math>O_{AB}$ or of class O_{LA} [2, p. 35] are characterized by a certain topological property of analytic functions on R, where O_{H_p} denotes the totality of surfaces R on which Hardy class $H_p(R)$ contains only constant members. The reader should know what is meant by O_{AB} , O_{AD} and O_{HD} [1, pp. 200 and 198].

A complex-valued harmonic function f on a surface R is said to be open if w=f(P), $P \in R$, carries open subsets of R to those of the w-plane. Given a surface R, we denote by $\mathcal{L}(R)$, $\mathcal{H}_p(R)$ $(0 , <math>\mathcal{B}(R)$ and $\mathcal{D}(R)$ the classes of open harmonic functions f on R such that $\log^+|f|$ has a harmonic majorant on R, $|f|^p$ has a harmonic majorant on R, f is bounded on R and f has finite Dirichlet integral on R, respectively. We denote by $O_X(X=\mathcal{L},\mathcal{H}_p,\mathcal{B},\mathcal{D})$ the class of surfaces R on which X(R) is empty. Then we have

$$O_{H_p} = O_{\mathscr{H}_p} \quad \text{for } 0$$

$$O_{AB} = O_{\mathscr{A}} \quad \text{and} \quad O_{LA} = O_{\mathscr{L}}.$$