Algebra of stable homotopy of Z_p -spaces and applications

By

Hirosi Toda

(Received September 1, 1970)

Introduction

The stable homotopy classes of maps: $\sum^{t+n} X \to \sum^{n} Y$ will be denoted by $\pi_{t}^{S}(X; Y)$. When X = Y, $\mathscr{A}_{*}(X) = \sum \mathscr{A}_{t}(X)$, $\mathscr{A}_{t}(X) = \pi_{t}^{S}(X; X)$ forms a graded ring with the composition as the multiplication. p denotes an odd prime and $M = S^{n} \cup e^{n+1}$ a Moore space of type (Z_{p}, n) . We call a space X a Z_{p} -space if $\mathscr{A}_{*}(X)$ is an algebra over Z_{p} or equivalently $M \wedge X$ is the same homotopy type of $\sum^{n} X \vee \sum^{n+1} X$ (n: large). Then $\pi_{t}^{S}(M \wedge X; M \wedge Y)$ is decomposed into $\pi_{t+1}^{S}(X; Y) \oplus \pi_{t}^{S}(X; Y) \oplus \pi_{t-1}^{S}(X; Y)$. For given $\gamma \in \pi_{t}^{S}(X; Y)$, the smash product $1_{M} \wedge \gamma$ is decomposed to $\theta(\gamma) \oplus \gamma \oplus \gamma \oplus 0$, and we have a linear map

 $\theta: \pi_t^S(X; Y) \rightarrow \pi_{t+1}^S(X; Y)$

This θ is a derivation:

$$\theta(\gamma\gamma') = \theta(\gamma) \cdot \gamma' + (-1)^{\deg \gamma} \gamma \theta(\gamma')$$

and if the spaces satisfy a sort of associativity then θ is a differential $\theta\theta=0$ (Theorem 2.2).

On the other hand, for a given $\xi \in \mathscr{A}_t(M)$ the decomposition $\xi \wedge 1_X = \lambda_X(\xi) \bigoplus$ (other terms) defines a linear map

$$\lambda_X \colon \mathscr{A}_t(M) \to \mathscr{A}_{t+1}(X).$$

The basic property of this operation is the following commutation