On the nilpotence of the hypergeometric equation

By

William Messing

(Communicated by Professor Nagata, December 23, 1971)

Introduction

Let T be an arbitrary scheme, S a smooth T-scheme and \mathcal{M} a quasi-coherent \mathcal{O}_S-module. A T-connection on \mathcal{M} is by definition a homomorphism of \mathcal{O}_S-modules:

$$\nabla: \mathcal{D}er_{\mathcal{O}_T}(\mathcal{O}_S, \mathcal{O}_S) \rightarrow \mathcal{E}nd_{\mathcal{O}_T}(\mathcal{M})$$

which satisfies the "product formula":

$$\nabla(D)(sm) = s\nabla(D)(m) + D(s)m$$

for sections D of $\mathcal{D}er_{\mathcal{O}_T}(\mathcal{O}_S, \mathcal{O}_S)$, s of \mathcal{O}_S and m of \mathcal{M} over an open subset $U \subseteq S$. A section m of \mathcal{M} over U is called horizontal if $\nabla(D)(m) = 0$ for all D's, derivations on open subsets of U. Both $\mathcal{D}er_{\mathcal{O}_T}(\mathcal{O}_S, \mathcal{O}_S)$ and $\mathcal{E}nd_{\mathcal{O}_T}(\mathcal{M})$ are \mathcal{O}_T-Lie-algebras via the commutator bracket. The connection is called integrable if it is a Lie-algebra homomorphism. The obstruction to a connection being integrable is the curvature homomorphism $K: \bigwedge^2 \mathcal{D}er_{\mathcal{O}_T}(\mathcal{O}_S, \mathcal{O}_S) \rightarrow \mathcal{E}nd_{\mathcal{O}_S}(\mathcal{M})$ defined by $K(D \wedge D') = [\nabla(D), \nabla(D')] - \nabla([D, D'])$. Henceforth we will deal only with integrable connections.

A horizontal morphism ϕ between modules with connection