Simple groups of conjugate type rank 5

By

Noboru Ito*

(Communicated by Professor Nagata, August 4, 1972)

1. Introduction

Let \mathfrak{B} be a finite group, $I(\mathfrak{B})$ the set of indices of centralizers of non-central elements of \mathfrak{B} in \mathfrak{B} , and r the number of elements in $I(\mathfrak{B})$. r is called the conjugate type rank of \mathfrak{B} . We introduce an ordering in $I(\mathfrak{B})$ as follows: let a and b be two elements of $I(\mathfrak{B})$. Then a > b if and only if a divides b. Let k be the number of maximal elements in $I(\mathfrak{B})$. Then \mathfrak{B} is called k-headed. We form a graph $C(\mathfrak{B})$ of \mathfrak{B} as follows: the points of $C(\mathfrak{B})$ are the elements of $I(\mathfrak{B})$. The (oriented) edge ab of $C(\mathfrak{B})$ exists, where a and b are points of $C(\mathfrak{B})$, if and only if a > b. We denote the edge ab by a. $C(\mathfrak{B})$ is called the conjugate type graph of \mathfrak{B} . The centralizer $\frac{1}{b}$

of any non-central element of \mathfrak{G} in \mathfrak{G} corresponding to an isolated point of $\mathcal{C}(\mathfrak{G})$ is called free.

An obvious problem is as follows: Let r be a given positive integer. Then classify all (simple) groups \mathfrak{G} such that conjugate type rank of \mathfrak{G} are equal to r. When r increases, this problem probably will become more difficult with exponential growth rate. If, however, the shape of $C(\mathfrak{G})$ is given and coincident with that of the conjugate type graph of some known simple group, then the problem will become considerably tractable.

In previous papers we proved the following theorems:

(I) [7] A finite group (S) is a simple group of the conjugate type

^{*} This work is partially supported by NSF GP 28420.