J. Math. Kyoto Univ. (JMKYAZ) 13-1 (1973) 123-128

Some questions on Cohen-Macaulay rings

By

Masayoshi NAGATA

(Received, July 21, 1972; Revised Nov. 27, 1972)

In the present paper, we shall deal with the following type of problem on Cohen-Macaulay rings.

Let $R = \sum_{i=0}^{\infty} R_i$ be a graded noetherian ring, R_i being the module of homogeneous elements of degree *i*. If R_0 is a field, then it is easy to see that R is Cohen-Macaulay if and only if R_M is Cohen-Macaulay, M being the irrelevant prime ideal (i. e., $M = \sum_{i\geq 1} R_i$).

Our problem is to generalize this characterization.

For instance, one can ask the following questions:

Question 1. Assume that R_M is Cohen-Macaulay for every maximal ideal M such that $M \supseteq \sum_{i \ge 1} R_i$. Does it follow that R is Cohen-Macaulay?

Question 2. Let K be the total quotient ring of R_0 . Then, does the condition that both $R \bigotimes_{R_0} K$ and R_0 are Cohen-Macaulay imply that R is Cohen-Macaulay ?

To the writer's knowledge, Question 1 is unsolved yet and Question 2 has a negative answer. In the present paper we discuss some facts related to these questions, and main results relate to the case where R is a projective module over R_0 .

In connection with these question we ask the following

Question 3. Assume that R is Cohen-Macaulay. Does it follow