A remark on the foliated cobordisms of codimension-one foliated 3-manifolds

by

Kazuhiko FUKUI

(Received April 25, 1977)

Introduction

In [6], Rosenberg and Thurston posed the following problem: Are the Reeb foliations of S^3 foliated cobordant to zero? And Mizutani [5] and Sergeraert [7] gave the affirmative answer.

The purpose of this note is to generalize their result.

Let M^3 be an oriented closed 3-manifold. Then the manifold M^3 has a spinnable structure (cf. Alexander [1]). By the wellknown method [3], we can construct a foliation on M^3 from this spinnable structure \mathscr{S} . Let this foliation denote $\mathscr{F}_{\mathscr{S}}$. Note that the Reeb foliations of S^3 are also constructed from a spinnable structure of S^3 .

Our main theorem is as follows:

Theorem. For any oriented closed 3-manifold M^3 with any spinnable structure \mathcal{G} , the foliated manifold $(M^3, \mathcal{F}_{\mathcal{G}})$ is foliated cobordant to zero.

We shall work in the smooth category and all the foliations we shall consider, will be smooth and of codimension one.

$\S 1$. Reeb foliations and results of Sergeraert

We consider the Reeb foliation on S^3 . Let T^2 be a torus which is a unique compact leaf of this foliation. The *holonomy* along T^2 is a homomorphism of groups, $\mathscr{H}: \pi_1(T^2) \to G$, where G is the set of germs at 0 of C^{∞} -diffeomorphisms of \mathbf{R} , $f: \mathbf{R} \to \mathbf{R}$, with f(0) = 0. Let p_1 , p_2 be the standard generators of $\pi_1(T^2)$. If we orient adequately a small