Plessner points, Julia points, and ρ^* -points^v

By

J. S. HWANG

(Communicated by Prof. Y. Kusunoki, April 9, 1977)

1. Introduction.

Let f(z) be a function defined in the unit disk D(|z| < 1). As in [14], a point eⁱⁿ on the unit circle C(|z|=1) is called a Plessner point of f provided each angular cluster set $C(f, e^{i\theta})$ of f at $e^{i\theta}$ coincides with the extended plane. Following [6], we call a point e'' a Julia point of f provided in each Stolz angle Δ having one vertex at $e^{i\theta}$ the function f assumes all values on the Riemann sphere except possibly two. For $z, z' \in D$, we denote by $\rho(z, z')$ the non-Euclidean metric $\rho(z, z') = \frac{1}{2} \log \left[\frac{1+a}{1-a} \right], \text{ where } a = \frac{|(z'-z)/(1-zz')|}{1-zz'}.$ We call $\rho(z, z')$ the ρ -distance between z and z'. As in [9], a sequence $\Delta(n)$ of disks in D is called a sequence of cercles de remplissage for fprovided that the ρ -diameters of $\Delta(n)$ tend to zero, and the images $f(\mathcal{A}(n))$ cover all of the Riemann sphere, with the possible exception of two sets E(n) and G(n) whose spherical diameters tend to zero as $n \rightarrow \infty$. The sequence $\{z_n\}$ of centres of the disks $\{\mathcal{A}(n)\}$ is called a sequence of ρ -points for f. A point $e^{i\theta}$ is called a ρ^* -point of f provided each Stolz angle \varDelta with one vertex at $e^{i\theta}$ possesses a sequence of ρ points of f.

The content of this article has six more sections. In section 2, we discuss the inclusion property among Plessner points, Julia points, and ρ^* -points. Then we present a sufficient condition of normal functions in section 3. In section 4, we construct some holomorphic

^{*)} This research was supported by NRC of Canada. I am indebted to Professors Piranian and Seidel for valuable communication in this research.