J. Math. Kyoto Univ. (JMKYAZ) 18-1 (1978) 131-135

Formal degree and Clebsch-Gordan coefficient

By

Nobuhiko TATSUUMA

(Communicated by Prof. H. Yoshizawa, March 31, 1977)

1. Let G be a unimodular locally compact group, and $\omega = \{\emptyset, U_s\}$ be a unitary representation of G. Here \emptyset is the space of representation ω and U_s 's are its representation operators.

We call ω L^2 -representation if and only if ω is irreducible and there exists a non-zero vector v in \mathfrak{H} such that $\langle U_s v, v \rangle$ is a square integrable function of g in G with respect to the right Haar measure dg on G.

For an L^2 -representation ω , the following properties are known (cf. [1]).

1) For any vectors u, w in $\mathfrak{H}, \langle U_{g}u, w \rangle$ is square integrable.

2) For a fixed non-zero vector v in \mathfrak{H} , the map

 $\mathfrak{H} = u \longrightarrow \langle U_{\mathfrak{s}} u, v \rangle \in L^2(G)$

is an intertwining operator from ω to the right regular representation $\Re = \{L^2(G), R_{\epsilon}\}$ of G.

3) For any representation $\tau = \{\Re, V_s\}$ which is disjoint to ω , and any vectors u, v in \mathfrak{H} , any vectors x, y in \mathfrak{R} for which $\langle V_s x, y \rangle$ is square integrable,

 $\int_{g} < U_{g}u, \ v > < \overline{V_{g}x}, \ y > dg = 0.$

4) There exists a positive number $d(\omega)$, depending only on ω , such that

$$\int_{G} < U_{g}u, \ v > < \overline{U_{g}w, \ z} > dg = d(w)^{-1} < u, \ w > < z, \ v >$$

for any u, v, w, z in \mathfrak{D} .