J. Math. Kyoto Univ. (JMKYAZ) 18-1 (1978) 121-130

Cardinals, isols, and the growth of functions

By

Erik Ellentuck

(Communicated by Prof. H. Yoshizawa, March 30, 1977)

1. Introduction

Let ω be the non-negative integers and let Λ_z be the cosimple isols. To each $X \in \Lambda_z$ we can associate a unique degree of unsolvability Λ_x (c. f. [3]). This is the degree of any co-r. e. $\xi \in X$. Throughout this paper d is a non-recursive r. e. degree and Λ_d is the set $\{X \in \Lambda_z \mid \Delta_x \leq d\}$. In this paper we are concerned with the first order theory of $(\Lambda_d, +)$ where + is isolic addition. We study this structure by means of a first order language L containing individual variables $u_0, u_1, \ldots, v_0,$ v_1, \ldots, a binary functor + denoting addition, and a binary predicate = denoting equality. L is interpreted in ω or Λ_d in the usual way. Because ω and Λ_d are commutative semigroups we take the liberty of putting of L in the normal form $\sum_{i < n} a_i u_i$ where \sum denotes summation, $a_i \in \omega$, and $a_i u_i$ is the term consisting of u_i summed with itself a_i times. An AE special Horn sentence is a sentence of L having the form

 $(1) \qquad (\forall u_0, \ldots, u_{m-1}) (\alpha \rightarrow (\exists v_0, \ldots, v_{n-1})\beta)$

where $\alpha(u_0, \ldots, u_{m-1})$ has the form

 $(2) \qquad \bigwedge_{j < q} \left(\sum_{k < m} a_{jk} u_k = \sum_{k < m} a'_{jk} u_k \right)$

and $\beta(u_0, \ldots, u_{m-1}, v_0, \ldots, v_{n-1})$ has the form

 $(3) \qquad \bigwedge_{j < r} \left(\sum_{k < m} b_{jk} u_k + \sum_{k < n} c_{jk} v_k \right) \\ = \sum_{k < m} b'_{jk} u_k + \sum_{k < n} c'_{jk} v_k).$

In [6] it is shown that