Rigidity for isometric imbeddings

By

Eiji KANEDA and Noboru TANAKA

(Received, March 11, 1977)

Introduction.

Let f be an immersion of a manifold M into the *m*-dimensional Euclidean space \mathbb{R}^m . Assume that f is non-degenerate (see § 1). In his paper [15] one of the authors has shown that there is associated to f a linear differential operator L in a natural manner, and that it is equivalent, in a sense, to the differential operator $d\Phi_r$ of infinitesimal isometric deformations of f ([15], Theorem 1.2; Theorem 1.1 in the Especially the infinitesimal isometric deformations \boldsymbol{u} present paper). of **f** are in a one-to-one correspondence with the solutions φ of the equation $L\varphi=0$. It should be here pointed out that the symbol of the operator $d\Phi_t$ necessarily degenerates, while the symbol of the operator Thus we have the notion of ellip-L does not necessarily degenerate. ticity for the operator L. These facts indicate that the equation $L\varphi=0$ plays an important role in the study of the rigidity problem for the immersion f.

Owing the operator L, he has indeed established a global rigidity theorem ([15], Theorem 2.4) which may be stated as follows: Let f_0 be an immersion $M \to \mathbb{R}^m$ which satisfies the following conditions: 1) f_0 is elliptic, i. e., f_0 is non-degenerate and the associated equation $L\varphi=0$ is elliptic; 2) f_0 is globally infinitesimally rigid, i. e., every global solution of the equation $L\varphi=0$ is derived from an infinitesimal Euclidean transformation of \mathbb{R}^m ; 3) M is compact. Then the theorem states that if two imbeddings f and $f': M \to \mathbb{R}^m$ lie both near to f_0 with respect to the C^3 -topology, and if they induce the same Riemannian metric g, then there is a unique Euclidean transformation a of \mathbb{R}^m such that f'=af. He has also applied this theorem to the canonical isometric imbedding f_0 of a compact hermitian symmetric space, $M=K/K_0$, into the Euclidean space $\mathfrak{t}=\mathbb{R}^m$, \mathfrak{t} being the Lie algebra of K, and has obtained a rigidity