On a lattice property of the space $\Gamma_{ho} \cap \Gamma_{he}$

By

Fumio MAITANI

(Communicated by Prof. Y. Kusunoki, Dec. 9, 1978)

Introduction

In the Hilbert space $\Gamma = \Gamma(R)$ of square integrable real differentials on a Riemann surface R, let Γ_h (resp. Γ_{he}) be the subspace of Γ which consists of harmonic (resp. exact harmonic) differentials. The orthogonal complement of Γ_{he}^* in Γ_h is denoted by Γ_{ho} . The space of harmonic measure Γ_{hm} is defined as follows: $\omega \in \Gamma_{hm}$ if and only if for every $\varepsilon > 0$ and every compact set E there exist a canonical region $G (\supset E)$ and a harmonic function w_G which is constant on each boundary component of G such that $\|\omega - dw_G\|_G < \varepsilon$. The subspace Γ_{hm} is the orthogonal complement of the space Γ_{hse}^* in Γ_h , where Γ_{hse} consists of harmonic semiexact differentials. The subspace $\Gamma_{ho} \cap \Gamma_{he}$ clearly includes Γ_{hm} , and $\Gamma_{ho} \cap \Gamma_{he} = \Gamma_{hm}$ for finite bordered Riemann surfaces, but R. Accola showed an example of Riemann surface of infinite genus for which the equality does not hold.

Now for *HP*-functions u and v we denote by $u \wedge v$ (resp. $u \vee v$) the greatest harmonic minorant (resp. the least harmonic majorant) of u and v. A subspace $\Gamma_x \subset \Gamma_{he}$ forms a vector lattice if du and $dv \in \Gamma_x$ imply $d(u \wedge v)$ and $d(u \vee v) \in \Gamma_x$. We say that a subspace $\Gamma_x \subset \Gamma_{he}$ has a lattice property if $df \in \Gamma_x$ implies $d(f \wedge c) \in \Gamma_x$ for every real constant c. The space Γ_{he} forms the vector lattice, hence it has a lattice property. It is pointed out in [4] that the space Γ_{hm} has the lattice property.

Here we shall show that $\Gamma_{ho} \cap \Gamma_{he}$ has also the lattice property. Some related subjects shall be investigated.

1. We shall show first that Γ_{hm} forms the vector lattice. This implies that Γ_{hm} has the lattice property.

Proposition 1. Let u and v be harmonic functions such that du and dv belong to Γ_{hm} . Then $d(u \wedge v)$ and $d(u \vee v)$ belong to Γ_{hm} .

Proof. It is sufficient to show $d(u \wedge v) \in \Gamma_{hm}$. Let $\{R_n\}$ be a canonical regular exhaustion of R. For a given $\varepsilon > 0$, there exists an R_m such that $||du||_{R-R_m} < \varepsilon$ and $||dv||_{R-R_m} < \varepsilon$. Further, there exist an integer N(>m) and harmonic functions u_n and v_n in R_n (n > N) such that u_n and v_n are constant on each boundary component of R_n , $||d(u-u_n)||_{R_n} < \varepsilon$, and $||d(v-v_n)||_{R_n} < \varepsilon$. We have a continuous extension \hat{u}_n