On a lattice property of the space $\Gamma_{h_o} \cap \Gamma_{h_e}$

By

Fumio MAITANI

(Communicated by Prof. Y. Kusunoki, Dec. 9, 1978)

Introduction

In the Hilbert space $\Gamma = \Gamma(R)$ of square integrable real differentials on a Riemann surface *R*, let Γ_h (resp. Γ_{he}) be the subspace of Γ which consists of harmonic (resp. exact harmonic) differentials. The orthogonal complement of Γ_{he}^* in Γ_h is denoted by Γ_{ho} . The space of harmonic measure Γ_{hm} is defined as follows: $\omega \in \Gamma_{hm}$ if and only if for every $\epsilon > 0$ and every compact set *E* there exist a canonical region *G* ($\supset E$) and a harmonic function w_G which is constant on each boundary component of G such that $\|\omega - d w_{\theta}\|_{G} < \varepsilon$. The subspace Γ_{hm} is the orthogonal complement of the space Γ_{hse}^* in Γ_h , where Γ_{hse} consists of harmonic semiexact differentials. The subspace $\Gamma_{ho} \cap \Gamma_{he}$ clearly includes Γ_{hm} , and $\Gamma_{ho} \cap \Gamma_{he} = \Gamma_{hm}$ for finite bordered Riemann surfaces, but R. Accola showed an example of Riemann surface of infinite genus for which the equality does not hold.

Now for *HP*-functions *u* and *v* we denote by $u \wedge v$ (resp. $u \vee v$) the greatest harmonic minorant (resp. the least harmonic majorant) of *u* and v. A subspace $\Gamma_x \subset \Gamma_{he}$ forms a vector lattice if du and $dv \in \Gamma_x$ imply $d(u \wedge v)$ and $d(u \vee v) \in \Gamma_x$. We say that a subspace $\Gamma_x \subset \Gamma_{he}$ has a lattice property if $df \in \Gamma_x$ implies $d(f \wedge c) \in \Gamma_x$ for every real constant *c*. The space Γ_{he} forms the vector lattice, hence it has a lattice property. It is pointed out in [4] that the space Γ_{hm} has the lattice property.

Here we shall show that $\Gamma_{ho} \cap \Gamma_{he}$ has also the lattice property. Some related subjects shall be investigated.

1. We shall show first that Γ_{hm} forms the vector lattice. This implies that Γ_{hm} has the lattice property.

Proposition 1. *Let u and y be harmonic functions such that du and* dv *belong to* Γ_{hm} . Then $d(u \wedge v)$ and $d(u \vee v)$ belong to Γ_{hm} .

Proof. It is sufficient to show $d(u \wedge v) \in \Gamma_{hm}$. Let $\{R_n\}$ be a canonical regular exhaustion of *R*. For a given $\epsilon > 0$, there exists an R_m such that $||du||_{R-R_m} < \epsilon$ and $\|dv\|_{R-R_m} < \varepsilon$. Further, there exist an integer *N* (>*m*) and harmonic functions u_n and v_n in R_n ($n>N$) such that u_n and v_n are constant on each boundary component of R_n , $\|d(u - u_n)\|_{R_n} < \varepsilon$, and $\|d(v - v_n)\|_{R_n} < \varepsilon$. We have a continuous extension