A simple expression of the characters of certain discrete series representations, II

By

Shunsuke MIKAMI

(Communicated by Prof. H. Yoshizawa, april 2, 1979)

Introduction

In the previous paper [5], we showed that Hirai's general formula of the characters is reduced to a simple one for certain discrete series unitary representations of $SO_0(p, q)$ (p+q): odd). In this paper, we study the similar problem for the connected simple Lie group G of type FI, which is the unique exceptional Lie group of "class II".

Let $\mathfrak g$ be the Lie algebra of G, and B a compact Cartan subgroup of G. We denote by $\mathfrak b^*_{\epsilon}$ the complexification of the dual space of $\mathfrak b$, the Lie algebra of B, and $\mathfrak b^*_{\mathcal B}$ the lattice in $\mathfrak b^*_{\epsilon}$ consisting of such $A \in \mathfrak b^*_{\epsilon}$ that the mapping $\xi_A : B \ni \exp X \longmapsto e^{A(X)} (X \in \mathfrak b)$ defines a unitary character of B. Let G' be the totality of regular elements of G. Then by Harish-Chandra, it was shown that for each regular $A \in \mathfrak b^*_{\mathcal B}$, there exists a discrete series representation of G whose character π_A is expressed on $B \cap G'$ as follows:

$$\pi_{\Lambda} = \varepsilon(\Lambda) \left(\sum_{w \in W_b} \operatorname{sgn}(w) \xi_{w\Lambda} \right) / \Delta^{b},$$

where $W_{*}(=W_{G}(\mathfrak{h}))$ denotes the little Weyl group and the number $\varepsilon(\Lambda)$ = ± 1 is determined by Λ and the positive system of the roots. In [1], Hirai gave a global formula of π_{A} (the analytic function on G corresponding to π_{A}) valid for any $\Lambda \in \mathfrak{h}_{B}^{*}$.

Since the root system of type F_4 belongs to "class II", Hirai's formula for type FI is very complicated for general Λ . In this note just as for the case of $SO_0(p, q)$ (p+q: odd), we study how the terms in the original formula are cancelling out each other when a regular element Λ in \mathfrak{b}_B^* is dominant with respect to the positive system of Borel-de Siebenthal. We consider π_A only on the connected component Λ of the identity