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§1. Introduction

In population genetics theory we often encounter diffusion processes on the
compact domain K={(x,..., X)) € R%; x,>0,..., x,>0, 1 —x; — -+ —x,>0}. In
order to construct such diffusion processes, we will consider a martingale problem
on K.

Let A be a second order differential operator on K
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(1.1) A=i3_“=,1 a;;(x) Txidx, +i§1 bi(")a—xi
with domain D(A4)=C*(K)," where {a,(X)} i j<s is @ real symmetric and non-
negative definite matrix defined on K and {b{(x)},<i<q4 is an R4-valued measurable
function defined on K.

We assume that {a;;(x)} and {b(x)} are continuous on K. Let Q=C([0, o©):
K) be the space of all K-valued continuous functions defined on [0, o0). For each
we Q and each t>0, we denote x(t: w)=w(f). Let #, and & be the o-fields gener-
ated by {x(s); 0<s<t} and {x(s); s >0} respectively.

Let xe K. A probability measure P on (Q, &) is called a solution of the
(K, A, x)-martingale problem if it satisfies the following conditions,

(1.2) Plw; x(0: w)=x]=1, and

(1.3) denoting M (t)=f(x(2))— g;Af (x(s))ds, (M (1), #,) is a P-martingale for each
fe C¥K).

It is known that if a solution of the (K, A, x)-martingale problem exists, the
following conditions must be satisfied, (cf. Okada [9]).

d
(1.4) 4()=0 if x=0, and ¥ ¥ a,(x)=0 if 3 x=1,
=1 /=1 =

and

1) Each element of C%K) is a C%- function defined on an open set containing K.



