Diffusion processes in population genetics

By

Tokuzo Shiga

(Communicated by Prof. S. Watanabe, Oct. 23, 1979)

§1. Introduction

In population genetics theory we often encounter diffusion processes on the compact domain $K = \{(x_1, ..., x_d) \in \mathbb{R}^d; x_1 \ge 0, ..., x_d \ge 0, 1 - x_1 - \cdots - x_d \ge 0\}$. In order to construct such diffusion processes, we will consider a martingale problem on K.

Let A be a second order differential operator on K

(1.1)
$$A = \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{d} b_i(x) \frac{\partial}{\partial x_i}$$

with domain $D(A) = C^2(K)$,¹⁾ where $\{a_{ij}(x)\}_{1 \le i,j \le d}$ is a real symmetric and nonnegative definite matrix defined on K and $\{b_i(x)\}_{1 \le i \le d}$ is an R^d -valued measurable function defined on K.

We assume that $\{a_{ij}(x)\}\$ and $\{b_i(x)\}\$ are continuous on K. Let $\Omega = C([0, \infty)$: K) be the space of all K-valued continuous functions defined on $[0, \infty)$. For each $\omega \in \Omega$ and each $t \ge 0$, we denote $x(t: \omega) = \omega(t)$. Let \mathscr{F}_t and \mathscr{F} be the σ -fields generated by $\{x(s); 0 \le s \le t\}\$ and $\{x(s); s \ge 0\}$ respectively.

Let $x \in K$. A probability measure P on (Ω, \mathscr{F}) is called a solution of the (K, A, x)-martingale problem if it satisfies the following conditions,

(1.2) $P[\omega; x(0:\omega)=x]=1$, and

(1.3) denoting $M_f(t) = f(x(t)) - \int_0^t Af(x(s)) ds$, $(M_f(t), \mathscr{F}_t)$ is a *P*-martingale for each $f \in C^2(K)$.

It is known that if a solution of the (K, A, x)-martingale problem exists, the following conditions must be satisfied, (cf. Okada [9]).

(1.4)
$$a_{ii}(x) = 0$$
 if $x_i = 0$, and $\sum_{i=1}^d \sum_{j=1}^d a_{ij}(x) = 0$ if $\sum_{i=1}^d x_i = 1$,

and

¹⁾ Each element of $C^{2}(K)$ is a C^{2} -function defined on an open set containing K.