Segal-Becker theorem for K_G -theory

By

Kouyemon IRIYE and Akira KONO

(Received June 24, 1981)

§1. Introduction.

Let G be a finite group and \tilde{K}_G be the reduced equivariant K-theory of Atiyah-Segal [7]. By the Bott periodicity theorem [2], \tilde{K}_G is the 0-th term of the reduced equivariant cohomology theory \tilde{K}_G^* (cf. [5]). We denote by BU_G a representation space of \tilde{K}_G^* , that is

$$K_G(X) = \widetilde{K}^{0}_G(X_{+}) = [X_{+}, BU_G]_G$$

for any compact G-space X, where $[,]_G$ denotes the set of G-homotopy classes of based G-maps. By ω we denote the complex regular representation of G. Let CP_G^{∞} be the equivariant infinite dimensional complex projective space, which consists of lines in ω^{∞} with a G-action induced from that of ω^{∞} . Then CP_G^{∞} is a classifying space of G-line bundles.

The infinite loop space structure of BU_{g} defines an infinite loop map

$$\xi: Q_{\mathcal{G}}(BU_{\mathcal{G}}) \longrightarrow BU_{\mathcal{G}}$$

where $Q_G(X) = \operatorname{Colim}_n \mathcal{Q}^{n\omega} \Sigma^{n\omega} X$ for any pointed G-space X. The canonical G-line bundle over CP_G^{∞} defines a based map

$$j: CP^{\infty}_{G+} \longrightarrow BU_G$$
.

We put

$$\lambda = \xi \circ Q_G(j) \colon Q_G(CP^{\infty}_{G+}) \longrightarrow Q_G(BU_G).$$

The infinite loop map λ defines a transformation of cohomology theories

$$\lambda_*: P^*_G \longrightarrow K^*_G$$
,

where P_G^* is an equivariant cohomology theory defined by $Q_G(CP_{G+}^{\infty})$. Then we have

Theorem 1. For any compact G-space X,

$$\lambda_* \colon P_G(X) \longrightarrow K_G(X)$$

is a split epimorphism, where $P_G(X) = \widetilde{P}_G^0(X_+)$.